CFRP の賦形加工技術に関する研究(第1報)

栗田貴明*、西垣康広*、山田孝弘*

Study on the shaping and forming process of CFRP (I)

KURITA Takaaki*, NISHIGAKI Yasuhiro* and YAMADA Takahiro*

熱可塑性炭素繊維強化複合材料(以下、CFRTPと記す)は、軽量、高強度、高剛性といったメリットを有する 一方で、高コストがデメリットとなっている。その解決策の一つとして注目されている CFRTP を用いたサンド イッチ材の成形では、コア材の賦形も合わせて行うことが必要であり、立体成形が困難となっている。そこで本 研究では、コア材に熱可塑性繊維と炭素繊維を混合し抄紙したシート(以下、混抄シートと記す)を複数枚積層 し熱プレス成形した CFRTP 板を用いて、スプリングバックを利用した立体成形手法の確立を目指す。本稿では、 CFRTP サンドイッチ材の立体成形を行ったので報告する。

1 はじめに

CFRTP は、航空機産業や自動車産業をはじめとして 様々な分野で使用されており、今後も使用量が増えると 予想されている。軽量、高強度、高剛性といったメリッ トを有する一方で、高コストがデメリットであり、解決 策の一つとしてサンドイッチ材の利用がある。

CFRTP サンドイッチ材は、コア材に樹脂の発泡体や ハニカム構造体を使用することで、軽量化と低コスト化 を両立できるメリットがある。しかし、CFRTP サンド イッチ材の立体成形は、剛性の異なるスキン材とコア材 を同時に成形するとコア材がつぶれるという課題があり、 成形手法が確立されていない。過去の研究において、 CFRTP サンドイッチ材の立体成形を試み、箱型形状の 成形に成功した¹⁾。しかし、コア材の膨張力不足により 表面に凹凸がある形状の賦形は不向きであると推測され た。

このため、本研究では複雑形状を持つ CFRTP サンド イッチ材の立体成形手法の確立を目指す。コア材に CFRTP 板を使用し、CFRTP 板のスプリングバック力を 利用してスキン材を任意の形状に賦形する成形手法を検 討する。スプリングバックとは、ランダムな炭素繊維を シート化し、それを複数枚重ね、熱プレスにより作製し た CFRTP 板のような炭素繊維を含む材料において、炭 素繊維の残留応力が解放されることで板厚が膨張する現 象であり、材料に熱をかけることで発現する。武部らは、 スプリングバック力が 2 Ma以上の高い圧力となること を報告³しており、CFRTP サンドイッチ材を凹凸形状に 賦形する十分な値であると期待できる。

2 実験

2.1 材料

CFRTP サンドイッチ材のスキン材には炭素繊維(CF)

のクロス材とポリプロピレン(PP)の複合材料である 熱可塑性 CFRTP(Bond-Laminates 製 TEPEX dynalite 204、 以下クロス材 CF/PP と記す)の板材を使用した。板の厚 みは、0.5 mmである。コア材には、スプリングバックを 発現させるために成形した CFRTP 板(詳細については 2.2 で述べる)を使用した。

2.2 コア材の作製

本研究では、コア材として、神山らが検討した手法³⁾を参考に作製した CFRTP 板を使用した。

2.2.1 タッピ抄紙を用いた混抄シートの作製

混抄シートの材料として、熱可塑性短繊維(オレフィン系芯鞘タイプ)と炭素繊維(東レ(株)製トレカ)を使用した。両繊維を水中で分散させて混合した後、タッピシートマシンで抄紙を行い、簡易プレスで乾燥させて混抄シートを作製した。炭素繊維長は3mm、6mm、12mmの3種類を用いて炭素繊維長の異なる3種類の混抄シートを作製した。混抄シートの坪量は、200g/m²で統一した。作製した混抄シートの外観を図1に示す。混抄シートの厚みは約2mmであった。

図1 作製した混抄シート

* 次世代技術部

2.2.2 CFRTP 板の作製

2.2.1 で作製した炭素繊維長の異なる3 種類の混抄シートをそれぞれ複数枚積層し、熱プレス成形することで CFRTP 板を作製した。成形条件は、成形温度 170 ℃、 プレス圧力 20 Maとし、厚み2 mmのスペーサーを用いる ことで、板厚が2 mmとなるように調整した。作製した CFRTP 板の写真を図2 に示す。

2.3 コア材のスプリングバック率評価

炭素繊維長の異なる3種類のCFRTP板を170℃に昇 温した乾燥炉にて10分間加熱し、加熱前後の板厚を測 定してスプリングバック率を求めた。

2.4 CFRTP サンドイッチ材の成形

スキン材にクロス材 CF/PP、コア材に炭素繊維長の異なる3種類の CFRTP 板を使用して、3種類の CFRTP サンドイッチ材を成形した。成形条件を以下に示す。

- ・スキン材:上下面それぞれ 1ply (0.5 mm)
- ・コア材::板厚2 mm
- ・成形温度:170 °C
- ・成形時間:10 min

成形時の概略図を図3に示す。スペーサーはコア材の スプリングバック率を考慮して厚さ7mmのものを使用 した。成形後の写真を図4に示す。すべてのコア材は、 厚みが2mmから6mmに膨張しており、目的とする厚さ 7mmのCFRTPサンドイッチ材が得られた。

図3 CFRTP サンドイッチ材成形時の概略図

図4 成形後の CFRTP サンドイッチ材

2.5 X線CTによる界面状態観察

成形した CFRTP サンドイッチ材のスキン材とコア材 の界面を観察するため、マイクロX線CT(東芝ITコン トロールシステム(株)製、TOSCANER-32300µFD) と解析ソフト(ボリュームグラフィックス(株)製、 VGSTUDIO MAX)を使用した。

2.6 3 点曲げ試験

スプリングバック前後の炭素繊維長の異なる3種類の CFRTP 板と、成形した3種類(コア材に使用した炭素 繊維長が3mm、6mm、12mmの3種類)のCFRTPサン ドイッチ材を100mm×15mmに切り出した後、万能試験 機(Instron 製、5985型)を使用して3点曲げ試験を行 った。曲げ試験に使用した支持具および圧子の半径はい ずれも5mm、支点間距離は80mm、試験速度は4mm/min とし、試験片が破壊するまでの荷重と変位を測定した。 試験片数は n=5 とした。

2.7 CFRTP サンドイッチ材の立体成形

CFRTP サンドイッチ材を図 5 に示すお盆形状に成形 した。縁部分を成形するために凸形状の金型、ドリンク ホルダーを模した形状を成形するために円錐台の金型を 用いた。凸形状金型の凸部分の厚みと、円錐台金型の厚 みはどちらも2 mmとした。図6に立体成形時の概略図を 示す。スキン材とコア材を積層したものに金型を載せる だけのシンプルな構造である。熱プレス機を用いて CFRTP サンドイッチ材を立体成形した。成形条件は、 成形温度 170 ℃、プレス圧力はサンドイッチ材がつぶ れてしまう可能性があるためゼロとした。

図5 立体成形品形状モデル

図6 CFRTP サンドイッチ材立体成形時の概略図

3 結果及び考察

3.1 コア材のスプリングバック率評価

加熱前後のコア材の厚さとスプリングバック率を表 1 に示す。炭素繊維長が 3 mm、6 mm、12 mmのコア材のス プリングバック率はそれぞれ 269 %、275 %、280 %であ り、顕著な差は見られなかった。

スプリングバック前後の CFRTP 板を図 7 に示す。ス プリングバックは炭素繊維の変形によって発現すること から、炭素繊維長を長くすることで変形量も増加しスプ リングバック率も増加することが期待されたが、スプリ ングバック率の増加にはつながらなかった。原因として、 炭素繊維長に対して混抄シートの厚み (2 mm) が十分で はなく、炭素繊維が変形するスペースが確保できていな い可能性が考えられる。坪量を増加させることで CFRTP シートの厚みを増やすことは可能であるが、坪 量の増加により混抄シートの均一性が損なわれる懸念が あるため、タッピ抄紙という手法では坪量を増加させる には限界がある。坪量 1000 g/m² の混抄シートの作製を 試みたが、表面の凹凸がひどく、平滑な混抄シートを作 製することはできなかった。

3.2 界面観察

炭素繊維長3 mmを使用した CFRTP サンドイッチ材の X線 CT によるスキン材とコア材の界面観察結果を図8

図7 スプリングバック前後の CFRTP 板

表1	加熱前後のコア材の厚さと
スフ	プリングバック率評価結果

CF繊維長	加熱前(mm)	加熱後(mm)	スプリング バック率
3mm	2.6	7.0	269%
6mm	2.4	6.6	275%
12mm	2.5	7.0	280%

図8 X線CTによる界面観察結果 (炭素繊維長3 mm)

に示す。界面にボイドは確認されず、スキン材とコア材 が良好に接着していることが分かった。また、炭素繊維 長 6 mm、12 mmを使用した CFRTP サンドイッチ材にお いても同様の結果であった。

3.3 3 点曲げ試験結果

スプリングバック前後の CFRTP 板および CFRTP サン ドイッチ材の3点曲げ試験の結果を表2および図9に示 す。炭素繊維長6 mmを使用した CFRTP 板の曲げ応力が 最も大きくなることが確認された。炭素繊維長12 mmを 使用した CFRTP 板の曲げ応力は、炭素繊維長6 mmのも のと比べて約10%低くなった。これは、タッピ抄紙す る際の炭素繊維の分散性が影響していることが原因と考 えられる。炭素繊維長12 mmを使用して作製した混抄シ ートにおいては炭素繊維が凝集している部分が存在した。 スプリングバック後の CFRTP 板および CFRTP サンド イッチ材においては、炭素繊維長に関係なく曲げ応力が ほぼ一定の値となった。これは、スプリングバックが起

ほぼ一定の値となった。これは、スプリングバックが起 きることで内部に空隙が生じ、炭素繊維への力の伝達が うまく行えず、空隙部分から破壊が進んでしまうためだ と考えられ、コア材に用いる炭素繊維の繊維長は強度に 影響を及ぼさないと推測される。

3.4 立体成形品

立体成形品の写真を図 10 に示す。ドリンクホルダー 形状の部分はエッジ部分まで形状賦形が良好であるが、 お盆形状の縁部分はエッジ部分の形状賦形が良好ではな く、部分的に白色に変色した箇所が存在した。これは、

	曲げ応力(MPa)				
	3mm	6mm	12mm		
CFRTP板 (スプリングバック前)	51.1	65.8	60.2		
CFRTP板 (スプリングバック後)	13.1	14	15		
CFRPサンドイッチ材	27	25.6	25.8		

表2 3点曲げ試験結果

図9 3点曲げ試験結果

図10 立体成形品

コア材の膨張が縁のエッジ部分まで達していないことが 原因であると考えられるため、コア材のスプリングバッ ク率を増加させることで改善が期待できる。平面部分は、 スプリングバックによる膨張圧が均一にかかっており平 滑な面となっていることが確認された。これらの結果か ら、コア材の膨張率に対して賦形したい立体形状の厚み が薄いほど良好な賦形が可能であると考えられるため、 品質の良い成形品を作成するためには、成形品の厚みを 十分に考慮する必要があることが示唆された。

4 まとめ

CFRTP サンドイッチ材の新たな立体成形手法の開発 を目指し、炭素繊維のスプリングバックを利用した成形 手法を検討した。タッピ抄紙を用いて混抄シートを作製 した後、熱プレス成形した CFRTP 板(コア材)のスプ リングバック率は約 270 %となり、コア材として十分な 膨張率があることを確認した。この CFRTP 板をコア材 として CFRTP サンドイッチ材の立体成形を行ったとこ ろ、お盆形状の成形に成功した。コア材の膨張不足によ り賦形が良好でない箇所が確認されたが、コア材の膨張 量を考慮して成形品の厚みを設定することで良好な賦形 が可能であると考えられる。

【謝辞】

本研究の一部は、公益財団法人遠藤斉治朗記念科学技術 振興財団の助成金を受けて実施しました。ここに感謝の 意を表します。

【参考文献】

- 栗田ら,岐阜県産業技術総合センター研究報告 No.5, pp79-81,2024
- 2) 武部ら,Journal of the Society of Materials Science, Vol.65,No.8, pp550-560,Aug.2016
- 3) 神山ら,岐阜県産業技術センター研究報告 No.10, pp50-53,2016