工具鋼への複合表面処理効果についての研究(第2報)

細野 幸太、大川 香織、小寺 将也

Compound surface treatment effect of alloy tool steel (II)

Kota Hosono, Kaori Okawa and Masaya Kodera

高硬度転造ネジを作製する転造ダイスには、高硬度工具鋼が使用されている。この高硬度工具鋼に耐疲労特性 の向上が期待できるショットピーニング処置を最初に行い、その次に耐久性の向上が期待できる窒素をキャリア ーとする2種類の表面処理をそれぞれ行う複合表面処理を試み、その効果について検討した。

1. はじめに

近年の自動車産業分野において各種部材等の軽量化が 進められ、ネジやボルト類においてもダウンサイズ化と 低コスト化が求められている。ダウンサイズ化に伴い、 品質精度の観点から熱処理済みの高硬度ネジ素材及び高 硬度転造ネジダイス(ダイスと記す)が不可欠となって いる。しかし、高硬度ネジによりダイスの耐久性が低下 し、ダイスの取り換え、生産ライン停止等が問題となっ ている。そこで現在の対応策としては、ダイス表面にイ オン窒化等の表面処理 ¹⁾を施し、表面硬度を高くしてい る。しかし、イオン窒化は、処理面がスパッタリング作 用によりマイクロクラックなどの亀裂の起点が発生しや すく、表面層に脆い化合物層が生成される等の問題があ り、さらなる耐久性の向上が求められている。前報では 脆い化合物層を抑制するイオン窒化処理(IN)と脆い 化合物層を生成しない窒素拡散処理(DN)を試みネジ 転造数を評価したところ、DN のほうが IN よりネジ転 造数が向上することがわかった²⁾。また、耐疲労特性向 上が期待できる高硬度工具鋼へのショットピーニング処 理(SP)により、残留圧縮応力が未処理材よりも大幅 に向上した²⁾。本研究では、最初に疲労強度向上が期待 できる高硬度工具鋼への SP を行い、次に耐久性向上が 期待できる2種類の表面処理(IN 並びに DN) をそれぞ れ施した。これらの複合表面処理(SP+IN 及び SP+DN) について表面形状、窒素拡散層、硬さ並びに残留応力等 の効果について検討した。

2. 実験

2.1 ショットピーニング処理

平面研削した 20mm 角×4mm 厚の高硬度工具鋼板材 (870HV) について、硬さの異なる平均粒径 φ 50µm の 2 種類のスチール材 (A: 800HV と B: 900HV) と平均 粒径 φ 50µm の超硬材 (C: 1400 HV)によるエア式ショッ トピーニングを行った。それぞれのショットピーニング 処理について SP (A) 、SP (B) 、SP (C) と表記する。 ショットピーニング処理条件としては、投射材噴出ノズ ルから試験片までの距離を 200mm とし、試験片の送り 速度を 33.3mm/s とした。

2.2 複合表面処理

2.1 で 3 種類の SP (SP (A) 、SP (B) 、SP (C)) を施した各種工具鋼について、2 種類の表面処理 (IN 並びに DN) をそれぞれ施した。6 種類の複合表面処理 について、SP (A) +IN、SP (B) +IN、SP (C) +IN 、 SP (A) +DN、SP (B) +DN 、SP (C) +DN と表記す る。なお、IN 並びに DN は、前報と同じ処理条件で行 った²⁾。

3. 分析·評価

SP 後並びに複合表面処理後の最大高さ粗さ(Rz)を レーザー顕微鏡(VK9700/9710:(株)キーエンス製) で測定した。また、樹脂包埋した断面についてミクロ組 織の観察、硬さ分布、窒素分布状態、X 線回折装置によ る表面層の構造解析を行った。ミクロ組織の観察は、鏡 面研磨後、5%ナイタールで腐食し光学顕微鏡で行った。 硬さ分布については、深さ 10µm から 200µm までをマ イクロビッカース硬度計(HM-124: Akashi 製)を用い て荷重 0.49N で測定した。窒素分布は、電子線マイクロ アナライザ (EPMA: JXA-8530F: 日本電子(株)製) を 用い、窒素分布状態を面分析した。表面層の構造解析は、 X線回折装置(SmartLab:(株)リガク製)を用い、X線 源を Cu、管電圧 40kV、管電流 30mA で測定した。残留 応力は、残留応力測定装置(µ-X360s:パルステック工 業(株))を用いて、Cr-Ka線により Fe211 回折を傾斜角 35°で測定した。深さ方向の残留応力測定は、表面層 を電解研磨により逐次除去して行った。

4. 結果及び考察

4.1 表面形状

図1にそれぞれ未処理材、ショットピーニング後 (SP (A) 、SP (B) 、SP (C))の走査型電子顕微鏡 (SEM) 像並びにレーザー顕微鏡で測定した Rz を示す。 転造ネジダイスでは、Rz が小さすぎるとネジ転造が困 難になるため、Rz を把握し制御することが必要となる。 同図より SP (A) 、SP (B) 後の Rz は、未処理材より も約半分程度になった。これらは投射粒子の衝突により 被処理材が塑性変形したためであると考えられる ^{3,4)}。 また SP(C)後では、未処理材よりも2倍以上 Rzが大 きくなり、SP(C)後の表面は灰色を呈していた。そこ で SEM を用いた元素分析(エネルギー分散型 X 線分析 : EDX)を行うと、投射材である超硬に含まれるタン グステン(W)並びに炭素(C)が表面に存在している ことがわかった。このことは、投射材の一部が被処理材 の表面及びその近傍に移着することが報告されており ^{3,4)}、SP(C)においても超硬投射材の一部が表面に移着 していると推察される。また、複合表面処理後の Rz は、 IN 処置後において、SP(A)+IN: 2.5µm、SP(B)+IN : 1.8µm、SP(C)+IN: 9.7µm となり SP のみの場合と ほぼ同程度の Rz であることがわかった。しかし、DN 処置後の Rz は、SP (A) +DN: 1.4µm、SP (B) +DN: 1.6µm 、SP (C) +DN: 7.9µm となり、SP のみの場合 より Rz が小さくなることがわかった。

図 1 未処理材並びに各種ショットピーニング処理 後(SP(A)、SP(B)、SP(C))の表面 SEM 像

4.2 断面組織・窒素分布状態・硬さ分布・表面層 構造解析

図 2 に複合表面処理後 (SP (A) +IN、SP (B) +IN、 SP (C) +IN)の断面組織観察像並びに EPMA による窒 素分布像を示す。表面から 20 μ m~30 μ m 程度まで素地 のマルテンサイト組織とは異なる組織が確認できた(図 2 (a)~(c))。これらの異なる組織は、窒素分布領 域にほぼ対応していることから窒素拡散層が主であると 考えられる(図 2 (d)~(f))。同図 2 (d)~(f) から窒素拡散層はそれぞれ、SP (A) +IN:35 μ m>SP (B) +IN:29 μ m>SP (C) +IN:23 μ m と算出した。IN のみにおける窒素拡散層は $50\mu m$ 程度であり²、SP+IN の複合表面処理では $15\mu m \sim 27\mu m$ 窒素拡散層が減少す ることから、SP後の IN は、窒素拡散を阻害すると考え られる。特に SP(C) は超硬投射材が表面に存在し、 SP(C) +IN における EPMA による断面面分析から W が表面から $2\sim 3\mu m$ 程度分布していることがわかった (図 3)。したがって、超硬投射材の存在が窒素拡散を 阻害している一因であると推測している。

図 2 各種複合表面処理材 (SP+IN) の断面組織観 察像((a)、(b)、(c))並びに窒素分布像 ((d)、(e)、(f))

図3 複合表面処理材 (SP (C) + IN) の断面 EPMA 分析 (W)

図 4 各種複合表面処理材 (SP+DN) の断面組織 観察像((a)、(b)、(c))並びに窒素分布像 ((d)、(e)、(f))

また、図 4 に複合表面処理後(SP(A)+DN、SP(B) +DN、SP(C)+DN)の断面組織観察像並びに EPMA による窒素分布像を示す。図 4 (a) ~ (c) において、 表面から 20µm~50µm 程度まで素地のマルテンサイト 組織とは異なる組織が確認でき、図 4 (d) ~ (f) の窒 素分布領域に対応していることから、表層は窒素拡散層 が主であると考えられる。同図から窒素拡散層はそれぞ \hbar , SP (A) +DN : 62 μ m > SP (C) +DN : 29 μ m > SP (B) +DN: 24µm と算出した。DN 単独処理における窒 素拡散層は 50µm 程度であることから ²⁾、SP(A)+DN では 12µm 窒素拡散層が増加し、それ以外の複合表面処 理では 21µm~26µm 窒素拡散層が減少した。よって SP +IN 処理とは異なり、SP(A) +DN は窒素拡散を促進 し、それ以外の SP (B) +DN、SP (C) +DN では SP +IN 処理と同様に窒素拡散を阻害することがわかった。 図 5 (a) 、 (b) に複合表面処理材の表面からの硬さ 分布結果を示す。すべての複合表面処理において表面側 が未処理材よりも硬くなり、SP(A)+DN の表面が最 も硬いことがわかった。硬化深さは、図2及び図4の窒 素分布像から算出した窒素拡散層に対応しており、窒素 拡散層が大きい程より内部まで硬くなることがわかった。

そこで各種複合表面処理について X 線回折装置によ る表面層の構造解析を行った(図 6 (a)、(b))。本 測定により表面から数 μm 程度の結晶構造がわかる。同 図 (a)より、SP+IN では窒素化合物 (ε-Fe_{2.3}N)の存在

を示す回折ピークがすべての複合表面処理で存在してい ることがわかった。また、SP(C) + IN では、元素分 析で確認した WC の存在を示す回折ピークがあること がわかった。さらに、 ϵ -Fe_{2.3}N の回折強度が超硬投射材 を用いた SP(C) + IN では、SP(A) + IN、SP(B) + IN より小さくなっている。したがって、SP(C) + IN の表面側の硬さが SP(A) + IN、SP(B) + IN より小さ くなったのは、表面側の ϵ -Fe_{2.3}N が少なくなった影響で あると考えられる。図 6 (b) より SP (A) +DN では、 窒素化合物 (γ '-Fe₄N) に対応する回折ピークが存在し、 それ以外の複合表面処理については、窒素化合物に対応 する回折ピークは存在しないことがわかった。また、 SP (C) +DN においても WC の存在を示す回折ピーク があることがわかった。SP (A) +DN において表面硬 さが最も硬くなったのは、表層に存在する γ '-Fe₄N の影 響であると考えられる。同図 (b) より α -Fe の半価幅は、 SP (B) +DN が最も小さいことが分かる。このことは 表面の結晶粒が大きくなった原因であると推測される。

4.3 残留応力分布

図7に未処理材 (Non-SP)、SP (A)、SP (B)、SP (C) 、 SP (A) +IN、 SP (B) +IN、 SP (C) +IN 、 SP (A) +DN, SP (B) +DN, SP (C) +DN, IN, DN () 表面近傍における残留応力分布を示す。SP(C)、SP (C) +IN、SP(C) +DN における表面の残留応力は超 硬投射材が存在しているため測定できなかった。したが って、表面から 20µm 以上の深さにおける残留応力分布 を示している。SP のみを行った被処理材は、表面から 20µm 程度の浅い深さにおいて圧縮残留応力が最大とな り、20µm 付近における最大値は、使用する投射材の硬 度とともに大きくなっている。SP(A)+IN、SP(B) +IN、SP(C)+IN においては、SP 単独処理よりも表面 から 40µm 以上まで圧縮残留応力が緩やかに減少してい る。同図より、IN のみの 40µm での圧縮残留応力が -460MPa であることから、IN の圧縮残留応力が寄与し ているためであると推測している。また、表面の圧縮残 留応力は、SP(A)+IN:-1692MPa>SP(B)+IN: -1509MPa>IN:-1382MPa となり、20µm 付近における IN のみ、SP(C)+IN の圧縮残留応力はそれぞれ、 -1310MPa、-1966MPa であることから SP+IN の複合表 面処理により表面側の圧縮残留応力が IN のみより付与 できることがわかった。すなわち SP による圧縮残留応 力付与の効果が表面側で維持されていると考えられる。 SP(A)+DN 表面の圧縮残留応力は、DN のみより減少 したが、DN のみと同じように 20µm で最大となり、内 部圧縮残留応力(20µm~110µm)が最も大きく推移し た。内部圧縮残留応力が最も大きく推移したのは、窒素 拡散層が DN のみより増加したためであると考えられる。 SP(B)+DN 表面の圧縮残留応力は DN のみより大き くなった。内部圧縮残留応力は、DN のみより小さくな りSP(B)+INと同様な傾向で緩やかに減少していくこ とがわかった。また、SP(C)+DNの圧縮残留応力は、 30µm で-1824MPa となり DN のみより大きくなるが、 40µm より内部では DN のみより小さくなることがわか った。したがって、SP(B)+DN、SP(C)+DN では、 SP による圧縮残留応力付与の効果が表面側で維持され、 窒素拡散層が DN のみより減少したために、内部圧縮残 留応力が DN のみより減少したと考えられる。

5.まとめ

 (1)表面の最大高さ粗さは、SP+IN では、SP のみと ほぼ同程度であり、SP+DN では小さくなった。

(2) SP+IN では、IN のみより、 ϵ -Fe_{2.3}N を含んだ窒素 拡散層が 15 μ m~27 μ m 減少することがわかった。また、 スチール投射材を用いた SP+IN により表面硬さ並びに 表面の圧縮残留応力を IN のみより付与できることがわ かった。超硬投射材を用いた SP+IN では、内部圧縮残 留応力を IN のみより付与できるが表面硬さは IN のみ より小さくなることがわかった。

(3) 800 HV のスチール投射材を用いた SP+DN では、 DN のみより γ'-Fe₄N を含んだ窒素拡散層が 12µm 増加 し、表面硬さ並びに内部圧縮残留応力が付与できること がわかった。また、900 HV のスチール投射材を用いた SP+DN では、DN のみより窒化物層を含まない窒素拡 散層が 26µm 減少し、表面硬さ並びに内部圧縮残留応力 が DN のみより小さくなることがわかった。さらに、 1400 HV の超硬投射材を用いた SP+DN では、DN のみ より窒化物層を含まない窒素拡散層が 21µm 減少し、表 面硬さは DN のみと同程度であり、内部圧縮残留応力が DN のみより小さくなることがわかった。

本研究により、複合表面処理(SP+IN、SP+DN)は、 高硬度工具鋼の耐疲労特性に影響する圧縮残留応力や耐 久性に影響する表面硬さを制御し、向上することも可能 な技術であることがわかった。

【謝 辞】

本研究を遂行するにあたり、株式会社岡本並びにパル テック工業株式会社にご協力頂きました。深く感謝の意 を表します。

【参考文献】

- 1) 横井ら, Sanyo Technical Report, 15(1), pp53-61, 2008
- 細野ら,岐阜県工業技術研究所研究報告第5号, pp20-22,2017
- 3) 片山ら, 砥粒加工学会誌, 60(7), pp386-392, 2016
- 4) 横井ら, 日本金属学会誌, 80(2), pp114-120, 2016