# 強度と弾力性を備えたバイオセラミックスの開発(第1報)

ーセルロースナノファイバーとセラミックスの複合化-

# 浅倉秀一

# Development of bioceramics with strength and elasticity (I) - Composites of cellulose nanofibers and ceramics -

### Shuichi ASAKURA

バイオセラミックスであるリン酸カルシウムと、工業用用途としても広く使われているアルミナについてセルロースナノファ イバー(CNF)との複合化を行った。リン酸カルシウムには、CNFを約10 wt%添加することで曲げ強度は約40 MPaを示し、 焼成してCNFを熱分解したリン酸カルシウムの試験片よりも高い靭性を示した。アルミナとの複合化に関しては、これまで の結合剤や可塑剤、潤滑剤等の成形助剤を一切加えずに、CNFの水分散液のみをアルミナの粉体と混合し、スラリーを 湿式で加圧成形することで、割れや亀裂のない成形体が形成できた。CNFを約1 wt%または10 wt%添加して成形した短冊 状の試験片、および1200℃で焼成した試験片の曲げ試験を行った結果、CNFの量が多いほど曲げ強度は向上した。さら に、焼成により緻密化することで曲げ強度は向上し、ひずみは小さくなる結果となった。しかしながら、耐摩耗性では、CNF を10 wt%添加し、焼成していない試験片では、アルミナ表面はほとんど摩耗せず、摩耗試験機の冶具のSUS304ボールの 方が摩耗し、試験片表面に付着していた。この試験片の表面構造は、焼結していないためアルミナ粒子の結合はないが、 CNFのネットワークが形成されており、これによってアルミナの耐摩耗性が向上したと考えられる。

#### 1. はじめに

セルロースナノファイバー(CNF)は、軽くて強度があるフ ァイバー状の素材であるが、ガラス繊維や炭素繊維と異な り、水分散した状態が安定である。一方、セラミックスは水 系のスラリーを原料とするものが多いため、従来の水系ス ラリーの水をCNF水分散液に置き換えれば、セラミックス 原料とCNFの混合スラリーの作製が可能となる。また、 CNFの高い増粘効果により水中では沈降しやすいセラミッ クス粒子が、CNF溶液中では沈降が起きにくく、高い分散 性を示すようになる。成形方法については、プラスチックは 原料の樹脂を溶融させて成形することが基本だが、セラミ ックスの場合は融点が2000℃を超えるものも多くあり、単 独で射出成形することも、金属のように溶かして鋳造型に 注いで成形することも一般的でない。伝統産業である陶磁 器は、カオリンやセリサイトなどの天然の粘土に、石英、長 石、水を混ぜることで塑性変形および成形が可能である。 一方、リン酸カルシウム、アルミナ、ジルコニア、炭化ケイ 素等のファインセラミックスの場合は、非可塑性原料である ため、水を加えただけでは成形は困難で、ポリビニルアル コールやカルボキシルメチルセルロース、樹脂エマルショ ン等の有機系結合剤、可塑剤、潤滑剤等の成形助剤を添 加して成形が行われている<sup>1)</sup>。成形後、1000℃を超える高 温で焼成することで、これらの成形助剤は分解除去され、 高い強度を持つセラミックス製品が形成される。

しかしながら、すべてのセラミックスにおいて高温焼成を 行っている訳ではなく、硬くて脆い性質を持つセラミックス に靱性を持たすために、樹脂と複合したものは非焼成で ある。また、成形助剤の脱脂および焼成における消費エネ ルギーは、全行程の中で大きな割合を占めるため、非焼 成でも強度や靭性が発現できれば、省エネとなる。

そこで本稿では、バイオセラミックスであるリン酸カルシ ウムと、IC基板、エレクトロニクス用各種セラミックスに多く 使用されているアルミナについて、CNFとの混合スラリーを 原料にして、CNFの耐熱温度より低い100℃以下で成形を 行った。成形品におけるCNFの添加量の違いや、焼成し た場合の物性の変化について評価した。

#### 2. 実験方法

#### 2.1 スラリーの調整方法

スラリーの作製方法は、最初にCNFの約1 wt%水分散 液(中越パルプ工業(株)製、広葉樹林由来の低解繊タイプ または高解繊タイプ、CNF固形分約1 g)に純水を加えて 家庭用ミキサーで2~3倍に希釈した。これは、原液のまま では粘度が高く、CNF同士が密に存在しているため、この 後混合するリン酸カルシウムやアルミナ粒子がCNF間に入 っていかないと考えられるためである。リン酸カルシウムの 場合は所定量の水酸化カルシウム(Ca(OH)<sub>2</sub>)粉末をCNF 液と共にミキサーで撹拌したのち、ビーカーに移してスタ ーラーで撹拌しながらリン酸(H<sub>3</sub>PO<sub>4</sub>)を少しずつビュレット を用いて添加して反応させ、リン酸カルシウムとCNFの混 合スラリーを得た。アルミナの場合は、希釈したCNF液に 少量の水で溶いたアルミナを加えてミキサーで撹拌した。 これらの混合スラリー中に水の割合は95 wt%前後であり、 水の割合を減らすために遠心分離処理を行った。混合ス ラリーをガラス製遠沈管に入れ、2330 Xgの遠心力で、10 分~30分処理し、2層に分かれた上澄みの水を捨てること で、水分量が約85~50 wt%に減少したスラリーが得られ た。

2.2 成形方法および評価方法

2.1で作製したスラリーから成形するために、本研究では 大きく2種類の方法で行った。一つは、スラリーからスプレ ードライによってセラミックスとCNFの複合粉体を形成した 後、乾式で加圧成形をする方法である。もう一つは、スラリ ー状のものから湿式で加圧成形によって水を除去しなが ら成形する方法である。リン酸カルシウムに関して、乾式 加圧成形および湿式加圧成形の一部は既報で報告済み である<sup>2)</sup>。本報では、最初にリン酸カルシウムについて、短 冊状の金型を用いた曲げ試験片を作製した。遠心分離と 熱乾燥により水分量を50 wt%前後まで減らした後、吸水性 のある素焼き板の上で短冊状の型に充填した。100℃に保 持した熱プレスで、金型に詰めたスラリーを押さえの型で 押しながら脱水をし、短冊状の試験片を作製した。アルミ ナについては、同様の短冊状の金型に加え、丸型の金型 を用いて、湿式加圧成形を行った。また、セラミックスの成 形に結合剤としてよく使われている、カルボキシルメチル セルロース(CMC)やポリビニルアルコール(PVA)を加えて 成形し、CNFの場合と比較した。

曲げ強度は、万能試験機(島津製作所製AG-10TB)を 用いて0.5 mm/minの速度で3点曲げ試験を行い、最大強 度を測定した。表面硬度は、マイクロビッカース硬度計(松 沢精機製DMH-2型)を用いて測定した。

アルミナについては、CNFを約0.1、1、5、10 wt%添加し た丸型試験片と、CNFを1、5、10 wt%添加した短冊状の試 験片を作製した。さらに、CNFを1および10 wt%添加して成 形した短冊状の試験片を、マッフル炉を用いて1200℃で 焼成した。アルミナの焼結温度は、1500℃以上であるため、 仮焼成レベルであるが、室温から5℃/minで1200℃まで昇 温し、1200℃で3 h保持した後、徐冷した。

アルミナにCNFが1 wt%含まれた成形体を1000℃まで昇 温させた時の熱的挙動は、示差熱・熱重量同時測定装置 (Simultaneous DSC/TGA; TAインスツルメント製SDT Q600)を用いて評価した。昇温速度は5℃/minとし、空気 中でのCNFの熱分解挙動を調べた。

アルミナにCNFを1 wt%および10 wt%添加した短冊状試 験片と、それぞれの割合のCNFが含まれていたものを 1200℃で焼成した試験片について耐摩耗試験と曲げ試 験を行い、比較した。耐摩耗試験は、表面摩擦試験機(新 東科学製トライボギアTYPE38型)を用いて、走査台に両 面テープで試験片を固定し、摩耗させる治具には10 Φの SUS304製ボールを用いた。試験片にかかる垂直荷重を 100 gf、走査速度1000 mm/sec、走査距離20 mmとし、30 分間試験片の方を往復(約750往復)させて、摩擦抵抗力 を測定した。

曲げ試験後の破断面やその他表面観察、摩擦試験後

の摩耗痕の観察は、電子線プローブマイクロアナライザー (EPMA; 日本電子製 JXA-8600S型)を用いた。

# 3. 結果と考察

3.1 リン酸カルシウムとCNFの複合体

図1(a)に示すようにCNFが10 wt%含まれる複合体は40 MPaの最大強度を示し、その時のひずみは1.7%であった。 リン酸カルシウムのみでは、試験片の作製は困難であった ため、次に10 wt%CNF入りの成形体を1050℃で2時間焼 成して、CNFを完全に熱分解させた試験片を作製した。焼 成後の試験片の重量はCNF分が減少し、寸法は約15%収 縮した。この試験片の曲げ強度は41 MPaまで達したが、 ひずみは0.4%であった(図1(b))。さらに、焼成した試験片で は最大強度直後に二つに破断されるのに対し、CNFが含 まれる焼成していない成形体では、ひびは入っても直ちに 二つに破断されることはなかった。以上より、リン酸カルシ ウムにCNFを10 wt%複合化することで、非焼成でも焼成し たリン酸カルシウムと同様の強度を示した。また、ひずみが 大きくなったことから、靭性が大きく、かつ図1(c)の断面画 像に見られるCNFのネットワークによって亀裂が進展しに くいセラミックスが形成された。リン酸カルシウムのみのスラ リーでは曲げ試験片は成形できなかったのに対し、CNFを 加えることで成形が可能であり、図1(d)の断面図から、焼 成した試験片ではCNFは存在せず、リン酸カルシウムの 粒子の融着が見られた。一方、比較としてCNF100 %の曲 げ試験片も作製して曲げ強度試験を行った。中越パルプ 製の10 wt%低解繊品(粘土状)を同様に型につめて加圧成 形したものについて試験を行ったところ、157 MPaの最大 強度を示し、その時のひずみは1.8%であった。強度は、 CNFの解繊度や配向性、プレス強度によっても変わると思 われるが、今回のリン酸カルシウムとCNFの複合体では、リ ン酸カルシウムが存在することでCNFのネットワーク構造



図1 曲げ試験結果と破断した断面のSEM画像

が緻密ではなくなり、その結果CNF間の水素結合力も弱く なることから、CNF100 %の曲げ強度を上回ることはないと 考えられる。CNFの割合を10 wt%から増やせば強度も増 すと考えられるが、CNFの割合を増やすことで水分も多く なり、その分多くの水の処理が課題となる。

さらに、両者のビッカース硬さを測定したところ、CNF入 りの非焼成のものはHvが23.1に対して、焼成したものは、 Hvは90.9に約4倍上昇した。この結果、曲げ強度が高いが 硬度は小さいことから、加工が容易なセラミックスの形成が 可能になったと言える。

一方、ファインセラミックスの成形で成形助剤としてよく 使われ、CNFと同じ多糖類であるCMCを10wt%加えたリン 酸カルシウム複合体を同様に作製した結果、脆く一体の 成形体にならなかった。成形助剤も一般的には、結合剤、 分散剤、潤滑剤、可塑剤等数種類を組み合わせる必要が あり、添加方法、混合方法にもノウハウがあることから、 CNFと同様な方法でCMCを混ぜるだけでは良好な成形は できないと思われる<sup>3</sup>。結合剤としてCNFを見ると、他の一 般的なセラミックス用結合剤と異なり、ファイバー形状をし ており、CNF間の水素結合によりネットワークを形成してい るため、ひび割れにくく、亀裂も伸展しにくい成形体が形 成可能であると言える。

3.2 アルミナとCNFの複合体

アルミナに対して、リン酸カルシウムと同様な方法でCNF を0、0.1、1、5、10 wt%加えて湿式加圧成形を行った結果、 CNFを全く加えずに成形すると、図2(a)のようにバラバラに なり成形できなかった。一方、CNFを0.1 wt%加えると、図 2(b)のように一部が欠けて、少し脆い成形体が形成された。 さらに、1 wt%ではほぼ良好に成形できたが、エッジの部分 がやや脆い成形体であった。5 wt%以上では、表面を研磨 してもエッジが欠けることもなく、鏡面仕上げすることも可 能であった。CNFが1 wt%と10 wt%含まれるアルミナ成形体 の圧縮試験を行った結果、図3に示すようにCNFが1 wt% では、初期強度は低かったが、圧縮されるにつれて10 wt% と同様な挙動を示した。

通常ファインセラミックスの成形には数種類の成形助剤



図2 CNFが、0、0.1、1、10 wt%含まれるアルミナ 成形体



図3 CNFが1または10 wt%含まれるアルミナ成形体の 圧縮試験結果



図4 CNFが1 wt%含まれるアルミナ成形体の熱分析結果

を加えるため、それらの熱分解挙動は複雑になり、昇温方 法も多段階で時間もかかる<sup>1)</sup>。アルミナにCNFを約1 wt%添 加して成形したものについて、SDTで重量および熱量の 変化を調べた結果を図4に示す。250℃を過ぎたころから CNFの分解による重量減少が始まり、約500℃までにほぼ 完了した。

CNFとの比較として、成形助剤としてよく使われている PVAを水に溶かしたものを10 wt%アルミナに加えて成形を 行った。PVAは先述のCMCと同様に糊の成分であるため、 スラリーはべとつき感があり、流動性が少なく、成形しづら い感触であった。このスラリーを丸型の金型にスラリーを詰 めて成形すると、バラバラになることなく、成形できたが、 短冊状の金型では50%以上が砕ける結果となった。

CNFを1 wt%添加して成形した短冊状の成形体の強度 試験を行った結果、5.1 MPaの曲げ強度とひずみは0.17% を示したのに対し、CNFを10 wt%添加したものでは、強度 は8倍以上の43.8 MPaまで上昇し、ひずみも1.48%となり、 靭性が付与された。一方、CNFが1 wt%含まれる成形体を 1200℃で焼成し、CNFを完全に熱分解させた試験片は、 寸法が約3.7%収縮した。この試験片を同様に曲げ試験を 行った結果、25.7 MPaの強度と0.77%のひずみを示し、焼 成していない試験片より、約5倍上昇した。また、CNFが10 wt%含まれる試験片を焼成した試験片は68.1 MPaの曲げ



図5 CNFが10 wt%含まれるアルミナを焼成した 試験片を摩耗試験した後の摩耗痕のSEM画像

強度と0.35%のひずみを示した。以上より、非焼成のアルミ ナについては、CNFの量が増すことでネットワーク構造に より曲げ強度が向上し、焼成したアルミナは、緻密化され ることで、CNFの強度よりセラミックスの持つ強度が上回っ たと考えられる。従って、焼成体の高強度化には、成形す る前のCNFを含んだ成形体を、欠陥なく均一な密度で成 形することが重要である。また、焼成時にCNFが熱分解し、 ガスが発生するため、CNFの長さや径、添加量によっても 収縮率も変わり、多孔体構造の作製も可能になると考えら れる。

次に、曲げ試験と同様の種類の試験片について、耐摩 耗性を評価した。往復摩擦試験中の摩擦抵抗力および動 摩擦係数に、それぞれの試験片間に大きな違いはなかっ た。しかしながら試験後の摩耗痕が、CNFが10 wt%含ま れる試験片のみ黒くなり、摩耗屑もほとんどでなかったの に対し、他の3種類の試験片では、試験直後は黒い摩耗 痕が着いた後、アルミナが削れて、白い摩耗屑が発生し た。SEMで摩耗痕を観察した結果、CNFが1 wt%含まれて いる試験片および焼成したもの、さらにCNFが10 wt%含ま



図6 CNFが10 wt%含まれるアルミナ試験片を摩耗 試験した後の摩耗痕のSEM画像



図7 CNFが10 wt%含まれるアルミナ試験片を摩耗試験 した後の摩耗痕のライン分析結果



図8 CNFが10 wt%含まれるアルミナ試験片の表面 SEM画像

れた試験片を焼成したものについては、図5のように表面 が削られている様子が観察できたが、CNFが10 wt%含ま れ、非焼成の試験片では図6のように摩耗痕の形状が異 なった。そこで、摩耗痕の垂直方向にアルミと鉄元素につ いてライン分析を行った。

その結果図7のように、摩耗痕の部分でアルミ由来のピ ーク強度が減少し、鉄が検出された。これは、摩耗試験機



図9 CNFが10 wt%含まれるアルミナを焼成した 試験片の表面SEM画像



図10 CNFが10wt%含まれるアルミナを焼成した 試験片を摩耗試験した後の摩耗痕のライン分析結果

のSUS304のステンレスボールに由来し、摩耗試験により、 ステンレスが摩耗し、アルミナとCNFの複合試験片表面に 付着したと考えられる。この試験片の摩耗痕以外の表面を SEM観察した結果、図8のようにCNFのネットワークや所々 にCNFの皮膜が見られた。焼成はしていないため、アルミ ナ同士の融着はないのに関わらず、アルミナ同士をつな ぐCNFの結合力によって、ステンレスより摩耗しにくい表面 になった。

また、CNFが10 wt%含まれた試験片を焼成した表面の SEM写真を図9に示す。最表面は一部アルミナ粒子が結 合した様子が観察され、硬度が高いと思われるが、それが 削れるまたは剥がれると内部は焼結が見られなかったこと から、アルミナが摩耗していったと考えられる。実際この摩 耗痕のライン分析をした結果、図10のように摩耗痕部分で は、アルミナが削れることで、摩耗痕の外側のZ方向の測 定点より、分析点が低くなっていることによりピーク強度が 減少したが、鉄は全く検出されなかった。同様に、1 wt%CNFが含まれる試験片や同じ割合CNFが含まれたも のを焼成した試験片では、摩耗痕のライン分析により鉄は 検出されなかったが、アルミの強度の減少の割合を比較 すると、焼結した試験片の方が摩耗痕が深いと考えられ る。

以上のことから、曲げ強度が大きければ耐摩耗性もある わけではなく、焼成によりCNFが含まれていないアルミナ は、セラミックスの「硬くて脆い」という特徴が示すように摩 耗されやすい結果となった。それに対して、CNFが表面に 存在し、かつそれが形成するネットワークがアルミナ同士 を強固に固定化することで、摩耗されにくい表面となった。 しかしながら今回の焼成温度は、一般的に行われる 1500℃以上の焼結温度より低い1200℃であったため、本 研究で述べた現象は、アルミナの焼結状態によって変わ る可能性がある。

## 4. まとめ

本稿では、リン酸カルシウムやアルミナに対して、CNF が補強材になることや、従来使用されていたセラミックス成 形の成形助剤としても、CNFを用いることができることを述 べた。工業用製品としてのアルミナでは、数百MPaの曲げ 強度や、高い硬度が必要な場合は高温で焼結させる必要 があるが、100 MPa以下の強度でも使用可能な場合は、 従来の焼成工程が不要のため、大幅な省エネとなる。また、 CNFは、増粘性やチクソ性を有するが、セラミックスとのス ラリーを作製すると、CMCやPVA等の糊のような性質と異 なり、流動性があり成形しやすい特徴を持っていた。さら に、ファイバー状の形状と強い水素結合によって非焼成セ ラミックスでも耐摩耗性を付与することが可能であることが 分かった。焼成したアルミナも、焼成前の成形状態、CNF の種類や配合によっても、焼結状態および強度が変わる と考えられるため、これらを解明することが今後の課題であ る。

### 【参考文献】

1) セラミックス編集委員会基礎工講座小委員会編, セラミ ックス製造プロセス―粉末調整と成形―, 社団法人日本 セラミックス協会, pp. 179, 1984

2) 浅倉秀一, 岐阜県産業技術センター研究報告, No. 11, pp. 1-4, 2017

3)助剤でこんなに変わるセラミックス,ティー・アイ・シィー, pp. 492, 2013