熱可塑性樹脂部材のレーザ加工技術の開発(第2報)

小河 廣茂、丹羽 孝晴、今井 智彦

Development of laser beam machining technology of a thermoplastic resin component (II)

Hiroshige Ogawa, Takaharu Niwa, Tomohiko Imai

炭素繊維複合材料(以下 CFRP という)は、硬い積層材料であるため加工が容易ではなく、切削加工やウォー タージェットでの様々な問題点が指摘されている。そのため、精密加工が可能で、メンテナンス性に優れたファ イバーレーザ加工機を用いて、レーザの熱影響を最小化できる種々の加工方法について検討した。

CFRP のレーザ切断では、パルスモードを使い、熱影響部(以下 HAZ という)を抑えた加工条件を探索した。 マトリックス樹脂の溶融温度に比例して、エネルギー密度を上げる必要があるが、それに伴い HAZ も大きくな る傾向があり、2mm 厚 CFRP(マトリックス樹脂 PA6、PA66)で、HAZ を約 0.2mm に抑える条件を得た。

CFRP と樹脂のレーザ溶着は、レーザ透過溶着法(LTW: Laser Transmission Welding 以下 LTW という)によ り行い、樹脂の溶融温度に比例してレーザ照射エネルギー密度を上げなければならないが、熱劣化の影響を伴う ため、レーザ出力、回転数、速度に対して最適組合せが必要となる。CFRP(マトリックス樹脂: TPU、PA6、 PA66)と PET のレーザ溶着において、1245N、1016N、918Nの引張試験力(接合部以外で破断)となる加工条 件を得た。

1. はじめに

ボーイング 787 で本格的に実用化された CFRP は、 航空機や次世代自動車産業向けの市場が拡大する傾向 にあるが、切断・穴あけ加工については、現状ではダ イヤモンドカッター、ウォータージェットが使われて おり、刃先摩耗、粉塵の影響、産業廃棄物処理、ラン ニングコスト等の問題を抱えている。また、CFRP の用 途拡大に向け、CFRP 等を含む樹脂同士の溶着や、樹脂 と金属の接合(溶着)が求められている。そのため、 精密加工が可能で、メンテナンス性に優れ、異種金属 や非導電性材料の加工が容易なレーザ加工に期待が高 まっており、本研究ではファイバーレーザを用いた実 用的な加工条件を究明する。

2. 実験

2.1 トレパニング加工

本研究においては、CFRP のレーザ加工に伴い生じる 熱影響について評価し、熱影響等を最小化するための最 適加工条件を究明する。本年度は前報¹⁾で扱った CFRP 以外のマトリックス樹脂 PA6、PA66、PPS(各板厚 2mm)について実験する。加工方法は、前報と同様に 図1の方法で行う。ただし、今回はレーザヘッドを Z 軸方向にも移動させ、その効果についても検証する。各 条件を表1と表2に、加工パターンを図2に示す。

図1 回転ヘッドを用いたトレパニング加工

表1	実験条件
11 1	一大吹木口

発振器	Rofin-Baasel FL010S		
モード	PW		
出力	1000W 設定可能範囲:100~1000W		
直径	∲10mm 設定可能範囲:		
繰返周波数	49, 124, 524, 1024, 2048Hz 設定可能範囲∶0~5000Hz		
Duty比	2.6, 3.0, 4.0, 5.0, 10.0, 16.0, 30.0% 設定可能範囲: 2.6~100%		
回転数	1000rpm(201·202), 2000rpm(207) 設定可能範囲:0~5000rpm		
照射時間	20sec (2secON+1secOFF) × 10		
CFRP マトリックス	PA66(201), PA6(202), PPS(207)		
板厚	2.0mm		

No.	Duty比	周波数	パルス長	エネルギー		
1	2.6%	49Hz	0.278mm	25.5W		
2	3.0%	49Hz	0.321mm	29.4W		
3	4.0%	49Hz	0.427mm	39.2W		
4	5.0%	49Hz	0.534mm	49.0W		
5	10.0%	49Hz	1.069mm	98.0W		
6	2.6%	124Hz	0.110mm	64.5W		
7	3.0%	124Hz	0.127mm	74.4W		
8	4.0%	124Hz	0.169mm	99.2W		
9	5.0%	124Hz	0.211mm	124.0W		
10	10.0%	124Hz	0.422mm	248.0W		
11	2.6%	524Hz	0.026mm	272.5W		
12	3.0%	524Hz	0.030mm	314.4W		
13	4.0%	524Hz	0.040mm	419.2W		
14	5.0%	524Hz	0.050mm	524.0W		
15	10.0%	524Hz	0.100mm	1048.0W		
16	2.6%	1024Hz	0.013mm	532.5W		
17	3.0%	1024Hz	0.015mm	614.4W		
18	4.0%	1024Hz	0.020mm	819.2W		
19	5.0%	1024Hz	0.026mm	1024.0W		
20	10.0%	1024Hz	0.051mm	2048.0W		
21	4.0%	2048Hz	0.010mm	1638.4W		
22	5.0%	2048Hz	0.013mm	2048.0W		
23	10.0%	2048Hz	0.026mm	4096.0W		
24	16.0%	2048Hz	0.041mm	6553.6W		
25	30.0%	524Hz	0.300mm	3144.0W		
【CFRP】TEPEX-201:PA66/T2, 202:PA6/T2, 207:PPS/T2く:マトリックス樹脂/板厚Tmm>						
出力1000W,回転速度1000rpm,回転径 0 10mm.						
2秒間照射、1秒間休み、Z軸0.2mm降下、2秒間照						
射、1秒間休み、Z軸0.2mm降下・・・の合計20秒間照						

表2 レーザ条件

2.2 レーザ溶着試験

射(10回繰返し)

本装置を用いて、レーザ加工法による異種材料の溶着 について研究する。今回は、樹脂(PET、PVC、PC)と CFRP(マトリックス樹脂: TPU、PA6、PA66、PPS) をLTW 法により接合する。

LTW の原理は、レーザービームを透過させる光透過 性樹脂部品を、レーザービームを吸収させる光吸収性樹 脂部品の上に重ね、接合したい面に圧力を加え、レーザ ービームを照射する。光透過性樹脂部品を透過したビー ムは、まず光吸収性樹脂部品の境界面付近で発熱し、溶 融する。次にその熱は、熱伝導によって光透過性樹脂部 品に伝わり溶融し、溶融プールを形成し、接合する。

CFRP の表面は光吸収性樹脂であり、この方法を用い てレーザ溶着実験を行い、接合面の欠陥及び強度向上の 改善点を明らかにし、高品質な加工条件を探索する。加 工条件はレーザの出力、周波数、摺動速度、回転速度に ついて、引張試験の評価を行って、最適な条件を究明す る。ただし、回転径、焦点距離は同一条件とする。

3. 結果及び考察

3.1トレパニング加工試験結果

レーザ加工では HAZ を全く無くすことはできない。 必ず加工部周辺に熱影響が発生する。CFRP の加工にお いて HAZ は実用上問題ない範囲内(目標値は $100 \mu m$ 以下)に抑える必要があると考えている。

CFRP:201

CFRP:202

CFRP:207 CFRP:208 図5 CFRPトレパニング加工結果

図5の結果から、穿孔可能な条件としては、1回の パルス照射である程度の切り込み量が確保できるか、ま た、トータルエネルギー密度が十分か、この両方の条件 がある閾値を超えた時に穴が空くと考えられる。その理 由として、表2の中から7条件をピックアップし、レー ザパルスパターンを図6に比較して示した。ここで縦軸 はレーザ出力で横軸は時間を示す。また図中の左の数字 は表2のNoに相当する。図5と図6から、No.6と No.15は、パルス長が同じ位なのにNo.6は穴が空かな かった。これはトータルエネルギー密度が小さいことが 要因と考えられる。次に、No.20とNo.22はトータルエ ネルギー密度が同じなのに、No.22はトータルエ ネルギー密度が同じなのに、No.22はトータルエ ネルギー密度が同じなのに、No.22はトータルエ ネルギー密度が同じなのに、No.23にかった。 即ち1回のパルス照射で十分な切り込み量が得られてい ないため、繰り返しても穴が空くには至らなかったと考 えられる。

HAZの測定結果について、各材料の最小値とその条件を表3に示す。

CFRP	Duty比	: 周波数 回転数 照射時間		HAZ	
(:板厚) (%)		(Hz)	(rpm)	(sec)	(mm)
201:2mm	3.0	49	1000	20	0.244
202:2mm	2.6	49	1000	20	0.231
207:2mm	5.0	124	2000	20	0.434
208:1mm	4.0	524	1000	10	0.247

表3 各材料のHAZ 最小値

3. 2ヘリカル加工効果

図7にレーザヘッドを Z 軸方向に移動させた(以下 3D 加工と言う)ものと、最表面に焦点を合わせて Z 軸 固定のもの(以下 2D 加工と言う)の比較を示したが、 2D 加工は、最表面層(焦点位置)にレーザが照射され 続けるため HAZ の影響が大きくなっているのが分かる。 また、3D 加工の切断面は、レーザ痕が確認でき、レー ザが内部にまで届いているのが分かる。板厚 2mm の CFRP においては、3D 加工の効果が得られており、加 工データは複雑になるが、HAZ の影響を抑え、切断能 力を向上する手段の一つと考える。

図7 レーザヘッド2次元と3次元加工の比較

3.3レーザ溶着試験結果

異種材料の溶着においては、溶着面以外つまり引張強 度の低い材料側で破断することが目標となる。CFRP

(4種類)と樹脂(3種類)について、図4の方法でレ ーザ溶着させた試験片を作成し、引張試験による評価を 行った。この結果を表4に示す。溶着面が剪断破壊に至 ったものは表に塗り潰して表示した。それ以外は、溶着 部が剪断破壊すること無く、樹脂側で破断に至ったもの である(図8参照)。ただし、表4は、各材料の最大強 度が得られた加工条件のみを示しており、全条件が分か る詳細データは、図9および図10にレーザ加工条件と 強度の関係を示す。ここで縦軸は試験強度[N]を示す。

CFRP208 は前報で引張試験において溶着部で破断し ない加工条件を PET について報告しているが、今回 PVC、PC についても探索した。今回新たに加えた CFRP202、CFRP207 と PVC、PC とのレーザ溶着につい ては、引張試験において、いずれも溶着部で剪断破壊に 至っており、加工条件の設定範囲が十分でなく、溶着強 度が低かったためである。これらの材料の樹脂の溶融温 度が CFRP208 に比べて高いため、レーザエネルギーが 高い条件下でないと溶着するには十分でなく、強度も得 られないと考える。

図8 レーザ溶着試験片(条件2)

-								
条件	CFR	Р	樹脂	出力	mode	速度	回転数	引張剪断荷重
1	208 1mm	TPU	PET 1mm	50W	CW	F20mm/min	2500rpm	1245.000N
2	208 1mm	TPU	PET 2mm	50W	CW	F30mm/min	2500rpm	1123.812N
3	208 1mm	TPU	PVC 1mm	50W	CW	F40mm/min	2500rpm	720.003N
4	208 1mm	TPU	PC 1mm	50W	CW	F40mm/min	3000rpm	512.822N
5	201 2mm	PA66	PET 2mm	50W	CW	F10mm/min	2500rpm	918.399N
6	201 2mm	PA66	PVC 2mm	50W	CW	F30mm/min	2500rpm	469.318N
7	201 2mm	PA66	PC 2mm	50W	CW	F10mm/min	2500rpm	636.366N
8	207 2mm	PPS	PET 2mm	50W	CW	F10mm/min	2500rpm	484.147N
9	207 2mm	PPS	PVC 2mm	50W	CW	F20mm/min	2500rpm	106.932N
10	207 2mm	PPS	PC 2mm	50W	CW	F20mm/min	4000rpm	274.915N
11	202 2mm	PA6	PET 2mm	50W	CW	F20mm/min	2500rpm	1016.135N

表4 各種材料のレーザ溶着条件と強度試験結果

図9 移動速度-引張試験結果

図10 回転速度--引張試験結果

4. まとめ

CFRP のレーザによる切断加工は可能であるが、熱影 響を全く無くすことはできないため、それを出来るだけ 小さくし、且つ加工時間を短くする手法の実現が期待さ れており、本研究で最適条件の探索を行った。

今回扱った材料は、マトリックス樹脂として,TPU、 PA6、PA66、PPS を含浸させた CFRP で実験した。 溶 融温度は、TPU<PA6<PA66<PPS の関係になっており、 溶融温度に比例して高いレーザエネルギーが必要となる。 この中で PPS を含浸させた CFRP が、最も穿孔数が少 なく、表1及び表2の実験条件は、エネルギー密度が低 めに偏っている。 また、板厚 1mm と 2mm ではレーザ照射時間が異なるため、単純な比較は出来ないが、2mm の場合 HAZ は、PA6<PA66<PPS となり、前述の関係と一致しており、低融点程、切り込み量が大きくなるからと考える。

CFRP208(板厚 1mm)の場合 HAZ は、前報で扱った 徐々にレーザ出力を下げていく 2D 加工<レーザ出力一 定 2D 加工<レーザ出力一定 3D 加工という結果となり、 3D 効果は認められなかった。これについては、板厚の 影響かマトリックス樹脂の影響かは分かっていない。

板厚 2mm の CFRP (201、202、207) について HAZ は、3D<2D の関係にあり、3D 効果は有効であった。

次に、CFRP と異種材料とのレーザ溶着について、今回は、CFRP (201、202、207、208)と樹脂 (PET、 PVC、PC)を用いてレーザ溶着加工の評価を行った。

今回の結果は前報と実験条件を変えた結果、CFRP208 と PET 1mm は同じ組合せとなるが、単純に比較できな い。変更点は、出力が 30W では安定しておらず再現性 が得られなかったため、50W に上げて実験した。さら に、図4に示す様にレーザ溶着パターンを ø 10mm の 1 ラインとした。今回新たに加えた樹脂の PVC、PC につ いては、引張試験の結果、CFRP208 のみ溶着部以外で 破断し、他の CFRP は溶着部で剪断破壊に至った。これ は溶融温度が PET に比べて高いため、よりエネルギー 密度の高い条件が必要となるからである。詳細は、図9 および図10に示したが、この中で例えば CFRP208 と PET 1mm、CFRP202 と PET 2mm 等発散しているものは、 さらに良好な加工条件が他に存在することを意味してお り、加工条件を広く取る必要があった。今回の結果から、 溶着強度は CFRP207<CFRP0201<CFRP202<CFRP208 となった。今後の課題として、特に溶融温度の高い材料 の溶着強度が低かったため、高いレーザエネルギー密度 で、熱的劣化が無く溶着強度が向上する加工条件の究明 が必要となる。

【参考文献】

 小河ら,岐阜県工業技術研究所研究報告 第3号, pp.43-46,2015