熱可塑性 CFRP(炭素繊維複合材料)の立体成形技術の確立(第3報)

道家 康雄、千原 健司、仙石 倫章、萱岡 誠、西村 太志

Study of the three-dimensional molding of Carbon Fiber Reinforced Thermoplastics (III)

Yasuo Doke, Kenji Chihara, Tomoaki Sengoku, Makoto Kayaoka and Futoshi Nishimura

熱可塑性CFRPは、熱硬化性CFRPと比較して易加工性・短時間成形・リサイクル性等の優位点があり、従来、 熱硬化性CFRPを加工していなかった企業において加工技術の開発や製品化に向けた取り組みがなされている。 本研究では熱可塑性CFRPの立体成形技術の確立と蓄積を目的とし、これまでに半球形状のプレス成形実験を実 施してきた。本年度は、箱型モデル金型と電動サーボプレスを用い、クロス材熱可塑性CFRP(以下、「クロス 材CFRTP」と表記)板材(130mm角×2mm厚)のプレス成形条件を検討した。箱型形状の立体成形では材料の切 り出し方向が成形品の良否に影響し、繊維の織目方向に対して45°方向に切り出した試験片は、0°方向に切り出 した試験片より良成形品を得ることができた。熱可塑性CFRPの立体成形では、成形品形状と炭素繊維の方向を考 慮し、材料を切り出す必要があることがわかった。一方、成形条件としては材料の予備加熱温度は280℃以上、金 型温度は80℃において良好な成形品を得ることができた。なお、プレス速度については、検討した条件(10mm/s、 100mm/s 、200mm/s)では成形品に相違は認められなかった。

1. はじめに

CFRPは軽量で高強度という特性を活用して、航空宇 宙分野や風力発電、スポーツ用品等に利用されている。 近年、航空機・次世代自動車産業を中心に、CFRPの更 なる利用拡大に向けて研究開発が進められている。特 に熱可塑性CFRPは、従来の熱硬化性CFRPと違い、予 備加熱方式を用いたプレス成形(図1)により短時間 での成形が可能であるとともに、リサイクルにも適し ているため、量産製品への応用が期待されている¹⁾。

これまで熱硬化性CFRPの加工技術(成形・切削・穴 あけ等)は、企業や研究機関で技術開発が行われ、多 くのノウハウが蓄積されてきた。しかし、熱可塑性 CFRPは現段階では一般的な製品への活用が普及してい ない最先端の材料であることから、加工技術や評価方 法の開発が急務となっている。特に製品化においては、 曲面立体形状の成形技術が重要な課題である。

本研究では、熱可塑性 CFRP の基礎的な成形技術の 確立とデータの蓄積を目的とし、モデル金型を用いた プレス成形条件の検討と成形品の評価を行っている。 これまでに基礎的なプレス成形技術として、半球形状 に成形するモデル金型(以下、「半球モデル金型」と 表記)と電動サーボプレスを用いた各種試験片 (130mm 角クロス材 CFRTP、φ65mm 円クロス材

CFRTP、130mm 角一方向性 CFRTP)のプレス成形結果 を報告してきた²⁻³⁾。これらの研究成果により、半球 形状のプレス成形条件を確立することができたが、様 々な製品形状への適用を考えると、更に他形状へのプ レス成形条件の確立とデータの蓄積が必要である。

そこで今回、クロス材 CFRTP を箱型形状に成形する ための立体成形条件について検討したので、その結果に ついて報告する。

なお、本報告は第 23 回秋季大会(プラスチック成形 加工学会)における発表内容⁴⁾を含め、まとめている。

2. 実験

2.1 試験片

成形材料は、炭素繊維クロス材と PA66 の複合 材料である熱可塑性 CFRP (Bond-Laminates 製 TEPEX dynalite201、以下「クロス材 CF/PA66」 と表記)の板材を使用した。試験片は、ダイヤモン ドソーにより板材 (厚さ2mm)から130mm×130mm 角 に切り出した。試験片の切り出し角度は、繊維の織目方 向に対し0°、45°の2 種類(以下、「0°試験片」、 「45°試験片」と表記)とした。

2.2 モデル金型

CFRTP 板材を箱型形状に成形するためのモデ ル金型(以下、「箱型モデル金型」と表記)の 概要図を図2に示す。金型製作にあたっては、 太平洋工業(株)の協力のもと自動車部品成形 に必要な成形条件を検討するための仕様を設定 した。設定仕様に基づき、(株)岐阜多田精機 と共同でモデル金型の詳細設計を行うとともに、 同社において金型を製作した。

図2 箱型モデル金型概要図

図3 電動サーボプレスに設置した 箱型モデル金型

2.3 プレス成形

成形過程において、材料の熱の拡散防止とハ ンドリングを良くするために、図2の金型概要 図に示した成形治具を使用した。試験片を成形 治具に挟んだ状態で IR オーブン(ヤマト科学 (株)製 DIR631)にて予備加熱し、箱型モデル 金型を取り付けた電動サーボプレス((株)放 電精密加工研究所製 ZENFormer MPS675DS) (図3)を用いてプレス成形した。なお、予備 加熱温度は、260°C、280°C、300°C、320°C、プ レス速度は、10mm/s、100mm/s、200mm/s、金 型温度は 30°C、80°Cの各条件を、適宜、組合せ て実験をした。

2.4 成形品の評価

成形品外観及び切断面は、目視により観察した。成形 品内部はマイクロフォーカス X 線 CT (東芝 IT コント ロールシステム(株)製 TOSCANER-32300 μ FD)によ り非破壊検査をした。また、成形品断面における炭素繊 維の状態を確認するため、切断した成形品を樹脂に埋設 し、研磨した表面を金属顕微鏡((株)ニコン製 光学 顕微鏡 LV-UDM)により観察した。 3. 結果及び考察

3.1 予備加熱温度の効果

これまでに半球モデル金型によるクロス材 CF/PA66 の立体プレス成形では、予備加熱温度が 280℃以上、プ レス速度は 200mm/s、金型温度は 80℃の条件で良好な 成形品を得たことを報告している²⁾。本結果を箱型モデ ル金型での成形に一部適用し、プレス速度を 200mm/s、 金型温度を 80℃で固定し、切り出し角度と予備加熱温 度の条件を組み合わせてプレス成形した成形品の外観を 図4に示す。予備加熱温度が 260℃では、箱型形 状部の損傷 (0°試験片、図4 (a))や成形品周辺部 に大きな折れ皺 (45°試験片、図4 (b))が発生した。 これは、予備加熱温度がマトリックス樹脂であ る PA66 の融点 (265℃)より低く、材料温度が 容易に変形可能な温度領域に達していなかった ため、成形時、試験片に無理な負荷がかかった ためであると考えられる。

一方、予備加熱温度が 280℃以上では、0°試験片、 45°試験片ともに、箱型形状部(立体成形部)周辺のク

図 4 切り出し角度と予備加熱温度の違いによる CF/PA66 箱型成形品 切出角度/予備加熱温度: 0°/260℃(a)、 0°/280℃(b)、0°/300℃(c)、0°/320℃(d)、 45°/260℃(e)、45°/280℃(f)、 45°/300℃(g)、45°/320℃(h) プレス速度: 200mm/s、金型温度: 80℃

ロス材 CFRTP が容易に変形できたため、良好な成形が 可能であった。箱型モデル金型におけるクロス材 CF/PA66 のプレス成形では、半球モデル金型におけ る成形と同様、マトリックス樹脂の融点に加えて材料 運搬時の熱損失も考慮し、280℃以上に加熱すれ ば立体成形が可能となることがわかった。

3.2 試験片切り出し角度の効果

図4に示した結果から、0°試験片、45°試験片とも に、予備加熱温度は同条件(280℃以上)で良製品が得 られることがわかった。しかし、同じ予備加熱温度にお ける成形品外観を比較すると、試験片全体の変形状態が 違うことがわかる。0°試験片では130mm角の各辺中央 部の炭素繊維が引き込まれた変形となっているが、一方、 45° 試験片では 130mm 角の対角線方向の炭素繊維が引 き込まれた変形となっている。これは材料に複合されて いる連続した炭素繊維は伸びないため、試験片が立体形 状に変形するためには、形状に合わせて周囲の炭素繊維 を引き込む必要があることに起因している。更に、試験 片の切り出し角度の影響を考察するため、箱型形状部の 詳細な観察(図5)を行った。凸部分の辺を比較した結 果、0°試験片の成形品では炭素繊維の一部に損傷が認 められたが、45°試験片の成形品では良好な成形品であ った。今回の箱型モデル金型におけるプレス成形では、 試験片の切り出し角度としては 45°が 0°と比べて適し ていることがわかった。このような切り出し角度の違い

による成形品の優劣は、半球モデル金型では観察されて いない。箱型形状のプレス成形では試験片切り出し角度 は重要な条件であり、その影響は半球形状の成形時より 顕著であることがわかった。クロス材 CFRTP の立体成 形では、炭素繊維の方向を考慮し、製品形状に適した材 料の切り出し方向を検討することが必要である。

3.3 金型温度調節

予備加熱温度を $280 \, \mathbb{C}$ 、 プレス速度を $200 \, \mathrm{mm/s}$ で一定とし、金型温度を変化させた成 形品の外観を図6に示す。いずれも箱型形状への成形は可能であったが、成形品底部の光沢を比較すると金型温度が $30 \, \mathbb{C}$ より、 $80 \, \mathbb{C}$ における 成形品が良好であることがわかった。クロス材 CF/PA66 の立体成形では、成形時の材料温度が 成形性に大きく影響する。マトリックス樹脂の 冷却効果を考えると、金型温度は低温が望ましい。しかし、材料を金型内に設置した瞬間の温度低下を抑制し、マトリックス樹脂が充分に軟 化している状態でプレス成形するためには、金型温度は高い方が有利である。また、金型温度 80 \mathbb{C} にすることは成形品外観の改善にも有効

図5 切り出し角度の違いよる CF/PA66 成形品 (箱型形状部の比較)、切出角度:0°(a)、 45°(b)、予備加熱温度:280℃、 プレス速度:200mm/s、金型温度:80℃

図6 金型温度の違いよる CF/PA66 成形品 金型温度:30℃(a)、80℃(b) 試験片切り出し角度:45℃、予備加熱 温度:280℃、プレス速度:200mm/s

図7 プレス速度の違いよる CF/PA66 成形品 プレス速度:10mm/s(a)、100mm/s(b)、 200mm/s(c) 予備加熱温度:280℃、金型温度:80℃

であることがわかった。以上のことから、クロス材 CF/PA66 のプレス成形では、半球モデル金型同様、箱型モデル金型においても、金型温度は高温が優位である。

3.4 プレス速度の効果

予備加熱温度を 280℃、金型温度を 80℃と一 定とし、プレス速度を変化させた成形品の外観 を図7に示す。プレス速度に関わらず、箱型形 状へのプレス成形は可能であり、その外観も顕 著な差異は認められなかった。予備加熱方式に よるプレス成形では、材料を金型に設置すると 材料温度が低下し、プレスの瞬間に上部パンチ が材料に接触すると更に材料温度が低下する。 材料温度が低くなると成形性が悪くなるため、 材料温度保持の観点から高速プレス条件が適し ていると考えられる。また、実際の製造現場に おける重要となる成形サイクルの短時間化を考 慮すると、成形品の良否に差が無ければ、可能 な限り高速成形が優位である。

3.5 成形品内部の評価

本実験において、最も外観が良好であった成 形品(加熱温度:280℃、プレス速度:200mm/s、 金型温度:80℃)のX線CT像を図8に示す。 クロス材炭素繊維層間が剥離することに起因す る空隙は認められず、成形品内部においても良 好な状態であることが示された。一方、成形品 の切断面写真を図9(a)に示す。切断面の目視観察 においてクロス材炭素繊維層間の剥離は認められず、成 形品内部は綺麗な層構造を維持している。これは X 線 CT の結果と一致しており、非破壊検査による内部層構 造評価が妥当であったことがわかる。また、成形品底部 の切断面(図9(a)丸印部分)を拡大した金属顕微鏡 観察画像を図9(b)に示す。炭素繊維断面が一様に分 布しており、また、炭素繊維と樹脂との界面剥離による 空隙は観察されなかった。CFRP 製品の物性を向上させ るためには、層間剥離が無く、炭素繊維とマトリックス 樹脂との界面の密着性が良いことが重要である。成形品 内部の層間剥離や炭素繊維と樹脂との界面剥離が無かっ たことは、良好な成形品であったことを示している。成 形品外観・内部ともに良好な成形が可能となったことで、 クロス材 CF/PA66 板材を箱型モデル金型によりプレス 成形するための基礎条件を確立できたと言える。

4. まとめ

熱可塑性 CFRP としてクロス材 CF/PA66 の 130mm 角 板材(厚さ 2mm)を箱型モデル金型と電動サーボプレ スによりプレス成形し、次の結果を得た。

- 1)検討した条件中、予備加熱温度は 280℃以上、金型 温度は 80℃において良好な成形品を得ることがで きた(半球モデル金型と同結果)。
- 2) プレス速度の違う成形品では、顕著な差異が認められなかった(半球モデル金型では、200mm/sが優位)。成形サイクルの短時間化には高速成形が優位であるため、プレス速度としては 200mm/s が良いと考えられる。
- 3) 試験片の切り出し角度は重要であり、今回の箱型形状では、炭素繊維の織目に対し45°に切り出した試験片が0°より良好な成形品を得た。(半球モデル金型では、切り出し角度の影響は成形品部分には認められなかった。)

モデル金型において良製品をプレス成形するための成 形条件を表1にまとめる。試験片切り出し角度を除き、 箱型モデル金型のプレス成形では、半球モデル金型にお けるプレス成形条件を適用可能であることがわかった。

図8 成形品(予備加熱温度:280℃、プレス速 度:200mm/s、金型温度:80℃)のX線CT像

図9 成形品(予備加熱温度:280℃、プレス速 度:200mm/s、金型温度:80℃)の切断面写 真(a)及び金属顕微鏡観察画像(b)

表1 モデル金型において良製品をプレス成形する ための成形条件

モデル 金型	試験片 切出角度	成形条件		
		予備加熱 温度	プレス速度	金型温度
箱型	45°	280℃以上		80°C
半球	_	280°C以上	200mm/s	80°C

*「-」表記は、各条件における成形品で優位差が 認められなかった場合を示す。

同種類の材料を用いたプレス成形では、成形品形状に関 わらず同様な成形条件を適用できることから、多様な形 状製品の成形では、モデル金型により基本的な成形条件 を確立し、その結果を製品の成形条件決定の指針とする ことが可能である。

【謝辞】】

本研究遂行にあたり、金型製作にご協力いただいた (株)岐阜多田精機様に深く感謝いたします。

本研究遂行にあたり、関連情報を提供していただいた 太平洋工業(株)様に深く感謝いたします。

【参考文献】

- 高橋ら,持続可能社会に向けた次世代熱可塑性 CFRP 入門 セミナー資料,Science & Technology, 2012
- 道家ら,岐阜県工業技術研究所研究報告 No.2, pp35-38,2014
- 3) 道家ら,岐阜県工業技術研究所研究報告 No.3, pp39-42,2015
- 4) 道家ら,成形加工シンポジア'15予稿集,pp407-408, 2015