CFRTP を活用した超軽量下肢装具の開発(第2報)

-CFRTP 織物材の材料試験及びシミュレーション評価-仙石 倫章、千原 健司、道家 康雄、萱岡 誠、田中 等幸

Development of the ultralight lower extremity orthosis using Carbon Fiber Reinforced Thermoplastics (II) Material testing and simulation evaluation of cross type Carbon Fiber Reinforced Thermoplastics

Tomoaki Sengoku, Kenji Chihara, Yasuo Doke, Makoto Kayaoka and Tomoyuki Tanaka

CFRTP は軽量・高強度な材料で、加熱しプレスすることで短時間に製品を成形することができる。また成形した後も再度、加熱することにより再成形が可能である。このことは人体に合わせて調整が必要な装具への適用が 有効であると考えられる。しかしながら、実際に製品に応用するには難しく、設計・評価技術に関する開発情報 が不足しているのが現状である。そこで本研究では、異方材かつ積層材である CFRTP を主部材とし、バリエー ションが多い装具を、CAE を用いて効果的に設計するために、シミュレーションに必要な物性値を取得する各試 験を実施し、シミュレーションの精度を評価した。結果、シミュレーションと試験において、標準試験片による 曲げの変位と強度の結果を比較し、大差がないことを確認した。

1. はじめに

軽量、高強度、高剛性といった特徴をもつ炭素繊維複 合材料(以下、「CFRP」と表記)は、古くはレジャー・ スポーツ用途から近年では航空宇宙・自動車等において、 製品に多用されるようになってきた。特に熱可塑性 CFRP(以下、「CFRTP」と表記)は熱硬化性 CFRP に 比べ、成形時間が短く、リサイクル性も有利であり、再 成形(2次成形)が可能であることから、今後さらなる 製品への応用が期待されている。

しかしながら、CFRTP は金属等の等方材と異なり、 繊維方向に特に強度を発揮する異方材であり、また積層 された材料を用いることが多いため、実際に製品に応用 するには難しく、設計および評価技術に関する開発情報 が不足しているのが現状である。

そこで我々は、CFRTP の製品開発を効率的に行うた めに、設計者によるシミュレーション(CAE)の活用が 有効であると考えた。本研究では、まず CFRTP 材料か ら試験片を切り出し、引張試験と圧縮試験を行い、材料 の物性値を取得する。次に、これらの得られた物性値を 用いて曲げのシミュレーションをし、実際の曲げ試験と 比較することにより、シミュレーションの精度について 評価した。

2. 試験方法

2.1 試験片

材料は、炭素繊維織物と PA66 の複合材料である CFRTP (Bond-Laminates 製 TEPEX dynalite201)を用いた。 各試験に用いる試験片は、各 JIS 規格に準拠し、主にウ オータージェット加工機 (Flow International Corporation 社製 FlowMach3 1313b-XD)により切り出した。試験片 は2時間以上真空乾燥機に入れ、その後温度 23℃±2℃、 湿度 50%±10%の環境下で48時間以上、状態調節した。

2.2 引張特性

JIS K7164¹⁾に準拠し、タイプ2の試験片を準備して、 疲労試験機(Instron 製 8802 型)により、引張試験を行 った。試験片は、油圧チャックにより固定した(図1)。 油圧チャックは、測定者によらず試験片の締め付け力が 安定し、測定誤差が小さくなるメリットがある。引張速 度は1mm/minとし、試験片が破断するまでの引張荷重と 変位を測定した。また引張弾性率とポアソン比を計算す るために、十字型の歪ゲージ(KYOWA 製 KFG-10-120-D16-11L1M2S)を試験片の中央部の表と裏 に1枚ずつ張り付けて(図1中央)、制御用ソフトウェ ア(KYOWA 製 PCD-30A)を使用し、歪を測定した。

2.3 面内せん断特性

JIS K7019²⁾ に準拠し、織目方向に対し 45 度に切り出 した試験片を準備して、疲労試験機(Instron 製 8802 型) により引張試験を行った。引張速度は 2mm/min とし、 試験片が破断するまでの引張荷重と変位を測定した。

2.4 面内圧縮特性

JIS K7018³に準拠し、A 試験片を準備した(図2左)。 万能試験機(Instron 製 5985 型)に圧縮治具(ASTM D 695、図2右)を用いて圧縮試験を行った。圧縮速度は 1mm/min とし、試験片が破断するまでの圧縮荷重と変 位を測定した。

図1 歪ゲージを貼り付けてチャックした試験片

2.5 シミュレーションの評価

シミュレーションは、設計者の利便性を考慮し、CAD モデルをそのまま使用でき、なおかつ積層材のシミュレ ーションが可能な Solidworks Simulation Premium2014 を 使用した。これにより、繊維方向に対して 0°に切り出 した試験片形状と、45°に切り出した試験片形状におい て、中央部に曲げ荷重が作用した場合を想定したシミュ レーションを行い、実際の曲げ試験との結果を比較する ことにより精度について評価した。

曲げ試験は JIS K7017⁴⁾ に準拠し、試験片を準備して、 電磁力微小試験機((株)島津製作所 MMT-500NV-10) を使用して、3点曲げ試験(A法)を行った(図3)。 圧子の半径は5mm、支点の半径は2mm、支点間距離は 80mm、試験速度は5mm/minとした。

3. 試験結果

3.1 引張弾性率、ポアソン比および引張強さ

引張試験により測定した応力-歪曲線を図4に示す。 引張弾性率は応力-歪曲線において、歪が 0.0005 と 0.0025の応力から傾き(応力/歪)を計算し、求めた。 結果、引張弾性率は 51.7GPa(5 点平均値、σ=0.73)を 得た。カタログ値は 53GPa であり若干低い値であった。 ポアソン比は縦横の歪みの比から計算し、0.0453 を得た。

引張強さは、測定した最大荷重を試験片の初期断面積 で割る事により算出した。測定した応力-変位の曲線を 図5に示す。結果、引張強さは 662.5MPa (5 点平均値、 σ =15.1)を得た。カタログ値は 785MPa であり 2 割近く 低い値となった。

図2 圧縮A試験片と圧縮治具

図3 曲げ試験の様子

3.2 面内せん断弾性率および面内せん断強さ

測定したせん断応カーせん断歪曲線を図6に示す。面 内せん断弾性率は、応カーせん断歪曲線において、せん 断歪が 0.001 と 0.005 の応力から傾き(応力/せん断歪) を計算し、求めた。結果、面内せん断弾性率は 1324MPa (5 点平均値、 σ =73.6)を得た。

面内せん断強さは、試験片が破壊した時の最大荷重を、 試験片の初期の断面積の2倍で割る事により算出した。 測定したせん断応力-変位の曲線を図7に示す。結果、 127.5MPa(5点平均値、σ=2.21)を得た。

3.3 面内圧縮強さ

規格によると、圧縮強さは試験片が破壊した時に測定 した最大荷重を、試験片の初期の断面積で割る事により 算出する。測定した圧縮応力一変位の曲線を図8に示す。 これによると圧縮強さは 392.2MPa(5 点平均値、σ =41.3) であった。しかし、本結果は後述する曲げ試験での強度 (圧縮破壊)と大きな隔たりがある。このため、シミュ レーションにより比較検討した。

図9に示すように、圧縮試験による破壊箇所(ダンベル形のくびれている部分)の応力が中央部分と比較して 1.9 倍程高く応力が集中していることがシミュレーション解析により明らかになったため、この分を割増した 742.1MPaを圧縮強さと推定した。

3.4 シミュレーションの評価

3.4.1 結果の概要

シミュレーションに入力した物性値を表1に示す。主 に前節3.1~3.3で得られた物性値を使用し、不足 分は一般的な値を使用した。なお、本材料は直交異方性 材料であるため、X方向とY方向における各物性値は同 じ値を入力した。

繊維方向に対して 0°に切り出した試験片の3点曲げ 試験のシミュレーション結果の抜粋(荷重 300kN 時の変 位)を図10に、繊維方向に対して45°に切り出した試 験片の3点曲げ試験のシミュレーションの結果の抜粋

(荷重 50kN 時の変位)を図11に示す。両試験片とも に中央部分の負荷した箇所を中心に変位しているが、 45°に切り出した試験片は、0°に切り出した試験片と 比較して、6分の1の荷重にも係らず大きくたわんでい る。これは異方性材料の特徴によるものであり、シミュ レーションにより再現されていることが分かる。

3.4.2 0° 切り出し試験片での比較

図12に、0°切り出し試験片における、試験および シミュレーションにより得られた荷重-変位線図を示す。 シミュレーション値は試験値に対して約10~15%小さ くなる結果であった。また変位が大きくなるにつれて、 試験値とシミュレーション値の差も大きくなっている。

図13に、0°切り出し試験片における、試験および シミュレーションにより得られた曲げ強度の分布を示す。 試験では、破断時に測定した最大荷重を用いて式(1)に

図10 シミュレーション(0°切出し試験片)

凶0 心刀 发世曲脉

図 9 圧縮試験片の破壊様相(左)と 応力シミュレーション(右)

表1 シミュレーションに入力した物性値

物性	値	単位	備考
X方向の弾性係数	51700	N/mm ²	試験値
Y方向の弾性係数	51700	N/mm ²	試験値
Z方向の弾性係数	10000	N/mm ²	
XY内面のポアソン比	0.0453	-	試験値
YZ内面のポアソン比	0.25	-	
XZ内面のポアソン比	0.25	-	
XY面内のせん断弾性係数	1323.6	N/mm ²	試験値
YZ面内のせん断弾性係数	3000	N/mm ²	
XZ面内のせん断弾性係数	3000	N/mm ²	
X方向の引張強さ	662.5	N/mm ²	試験値
Y方向の引張強さ	662.5	N/mm ²	試験値
X方向の圧縮強さ	742.1	N/mm ²	試験値
Y方向の圧縮強さ	742.1	N/mm ²	試験値
XY面内のせん断強さ	127.5	N/mm^2	試験値

図11 シミュレーション(45°切出し試験片)

より計算した。ここで σ_f は曲げ応力 [MPa]、Fは荷重[N]、 Lは支点間距離 [mm]、bは試験片の厚さ [mm]、hは試 験片の幅 [mm]、S ははりの中央がたわんだ距離 [mm] である。規格では、たわみが大きい場合の非線形性を補 正する式が場合分けされており、本式はこれに該当する。

シミュレーションでは、Tsai-Wu 破損則を用いて安全 率が1の時の荷重を曲げ強度とした。シミュレーション 値は、試験値と比較してほぼ同等の値となった。

3.4.3 45°切り出し試験片での比較

図14に、45°切り出し試験片における、試験および シミュレーションにより得られた荷重-変位線図を示す。 荷重50kNを境に、試験値とシミュレーション値が同等 になっている。試験では、荷重が増すにつれて加速的に 変位が大きくなっており、また除荷した後にも大きく歪 みが残留していたことから、この方向の変形に対する剛 性は樹脂が支配的な要因であり、荷重が増すにつれて塑 性変形していると考えられる。

3.4.4 シミュレーション結果の考察

今回使用したシミュレーションのソルバーでは、微小 変形領域における線形解析を基本としている。このため、 大きくたわんだ場合や、塑性変形する場合においては、 非線形の影響を受けて、誤差が大きくなる傾向がみられ た。しかしながら、誤差は最大でも30%程であり、通常、 安全率3~4 を見込んで設計する場合においては問題が なく、今後、設計に十分に活用できる。

4. まとめ

CFRTPを用いた製品開発を効率的に行うために、CAE の活用が有効であると考え、シミュレーションの精度に ついて評価し、次の結果を得た。

- 1)シミュレーションに必要な物性値を取得する試験 を実施し、方法を確立した。
- シミュレーションでの計算値と実際の試験値を曲 げ特性により比較し、互いの変位および強度は大差 がないことを確認した。

今後は、使用する材料に応じて物性値を取得する試験な らびにシミュレーションを行い、効率的に下肢装具等の CFRTP 製品設計を実施していく予定である。

また、試験方法に関しては、産業技術連携推進会議ナ ノテクノロジー・材料部会、高分子分科会共同研究にお けるラウンドロビン試験により精度を再確認し、シミュ レーションに関しては、今回使用したソルバーと別のソ ルバーについても引き続き評価する予定である。

図12 荷重-変位曲線図(0°切り出し試験片)

図13 曲げ強度結果(0°切り出し試験片)

図14 荷重-変位曲線図(45°切り出し試験片)

【謝辞】】

本研究開発「CFRTP を活用した超軽量下肢装具の開発」 は平成26年度より、株式会社今仙技術研究所ならびに岐 阜大学医学部附属病院と共同で実施しています。共同研 究者ならびに関係者の皆様に感謝いたします。

【参考文献】

- 1) JIS K 7164, プラスチックー引張特性の試験方法-
- JIS K 7019, 繊維強化プラスチック-±45°引張試験 による面内せん断特性の求め方-
- 3) JIS K 7018, 繊維強化プラスチックー積層板の面内圧 縮特性の求め方-
- 4) JIS K 7017, 繊維強化プラスチックー曲げ特性の求め 方-