熱可塑性樹脂部材のレーザ加工・超音波溶着技術の開発

小河 廣茂、田中 等幸、今井 智彦

Development of laser beam machining and ultrasonic welding technology of a thermoplastic resin component

Hiroshige Ogawa, Tomoyuki Tanaka, Tomohiko Imai

炭素繊維複合材料(以下 CFRP という)は、硬い積層材料であるため加工が容易ではなく、切削加工やウォー タージェットでの様々な問題点が指摘されている。そのため、精密加工が可能で、メンテナンス性に優れ、異種 金属や非導電性材料の加工が可能なファイバーレーザ加工機を用いて、レーザの熱影響について、加工条件と加 工状態の関係を明らかにし、熱影響を最小化できる種々の方法について検討した。

回転ヘッドを組み込んだハイブリッド・レーザ加工機は、トレパニング(穴開け)加工において、従来ヘッド よりも熱影響を小さく出来、加工時間を短くすることができた。さらに、CW モードより PW モードの方が、熱 影響が小さい。最適な出力のパルス波で短時間に加工することが、熱影響を最小限にする条件である。

1. はじめに

ボーイング 787 で本格的に実用化された CFRP は、 航空機や次世代自動車産業向けの市場が拡大する傾向 にあるが、切断・穴あけ加工については、現状ではダ イヤモンドカッター、ウォータージェットが使われて おり、刃先摩耗、粉塵の影響、産業廃棄物処理、ラン ニングコスト等の問題を抱えている。また、CFRPの用 途拡大に向け、CFRP 等を含む樹脂同士の溶着や、樹脂 と金属の接合(溶着)が求められている。そのため、 精密加工が可能で、メンテナンス性に優れ、異種金属 や非導電性材料の加工が容易なレーザ加工に期待が高 まっており、本研究ではファイバーレーザを用いて実 用的な加工条件を究明する。

2. 実験

2. 1エラストマー効果測定

エラストマーシートは、PC 機器の放熱用としても利 用されるなど、ヒートシンク効果が期待される。使用し

図2 エラストマーの吸熱測定

たエラストマーシート(株式会社タナック製衝撃吸収 ゲル)の成分については、非公開のため詳細は不明であ るが、シリコン系の素材で、粘着性と耐衝撃性を有する。 実際のレーザ加工では、図1に示すようにエラストマ ーシート上にワークを置き、上部からレーザビームを照 射する。先ずその吸熱効果を調べるため、図2のように レーザの代わりにヒーターを用い、1~3箇所に熱電対 を貼り、それぞれの温度変化を計測する。

2. 2トレパニング加工

モード	CW	PW
出力	150 - 700W	800 - 1004W
直径	ø 10mm	φ 5 - 15mm
周波数		2 - 500Hz
デューティ比	100%	2.3 - 17.0%
回転数	160 - 1000rpm	500 - 800rpm
照射時間	0.8 - 30sec	5 - 50sec
CFRP マトリックス	TPU	TPU/PA66
板厚	1.0mm	1.0mm/0.5mm

表1 実験条件と実験材料

図3 回転ヘッドを用いたトレパニング加工 本研究においては、レーザ加工機による CFRP の加工 方法を検討し、CFRP 切断面を評価し、熱影響等を小さ くするための最適加工条件を究明する。併せて、実用化 を目指した加工時間、加工精度の問題点を抽出し、生産 現場において利用可能なレーザ加工技術を確立する。

今回は、トレパニング加工を中心にレーザ切断性能に ついて評価実験を行う。実験条件は表1に示すとおり。

3. 結果及び考察

3. 1エラストマー効果

CFRP のエラストマーシートによる吸熱特性について、 実験結果を図3に示す。これよりエラストマーが CFRP の表面温度上昇を遅らせていることが確認できる。従っ て短時間であれば、レーザの熱影響を下げる効果がある と推定する。また、硬さ及び粘度の違うエラストマーシ ートを使って計測したが、それによる効果は見られなか った。

図4 エラストマーの吸熱特性

実際の CFRP の加工において、エラストマーシート有 無の比較実験を行った例を図5に示す。この結果からエ ラストマーシートに熱影響を抑える効果を確認した。

図5 CFRP 切断時のエラストマー効果

3.2トレパニング加工試験結果

上記に加工速度、1回のパルス幅、時間、角度の計算 式を示すが、トレパニング加工においては、加工速度 v とレーザ出力 P が大きく、照射時間 t_{on} が小さい程、熱 影響層(以下 HAZ という)を小さくできる。また、パ ルス幅 L_{on} が大きい程、加工時間は短くなる。何故なら、 強いレーザ出力が照射されると、時間と共に HAZ が成 長し、表面のみならず内部にまで熱影響による欠陥が拡 張する(図7参照)。特に熱溶融の伝搬速度が速い樹脂 や CFRP 等の素材程顕著である。

図7 X線CTによる内部欠陥評価 ここで、回転ヘッドと従来ヘッドの仕様を比較すると、 加工速度は、回転ヘッド>従来ヘッドの関係にあり、さ

らに前者は、加工時ワークの振動は殆ど無いなどの利点 を有する反面、加工できる直径は 22mm 以下と小さい。

実際にトレパニング加工を行い、回転ヘッドによる加 工の方が従来ヘッドに比べて、短時間で加工でき、 HAZ が小さいことが確認された。

ここで、HAZは工具顕微鏡を用いて図8に示す方法 で計測した。

図9 CW/PW モードによる HAZ の比較

レーザ加工では HAZ を全く無くすことはできない。 必ず加工部周辺に熱影響が発生するために、本研究では、 HAZ を出来るだけ小さくする方法を究明し、実用上問 題ない範囲内(目標値は 100 µ m 以下)に抑える技術の 確立が最も重要であると考えている。加えて加工時間と 加工精度についても合わせて検討しなければならない。

表1に示す条件でトレパニング加工を行い、CWと PWによる HAZ について測定した。

結果は図9に示す様に、CW モードよりPW モード の方が、HAZ が小さい。これは、エネルギー密度が CW>PW の関係にあり、熱影響が大きいためと推測さ れる。また、超短パルスレーザが樹脂材料等を加工する 際に熱影響を全く及ぼさないで切断できる理由からも分 かる。

しかしながら PW モードでは切断深さが浅いため、 照射を繰り返す必要があり、その結果、さらに熱影響層 が広がることになる。そのため、総合的に評価して良い 条件を見つける必要がある。

さらに PW モードによる実験を行い、得られた実験 データについて統計解析を行った。その結果を図10~ 11及び表2に示す。

図10 回帰分析結果

図11 残差プロット

表2 回帰式の精度と有意性

	t=0.5mm	n/PA66	t=1.0mm/TPU	
重相関係数R	0.6017		0.7276	
決定係数R ²	0.3621		0.5294	
有意F	0.1946		0.4501	
a ₁ 係数/t值	-4.3801	-1.5221	1.9045	2.9946
a₂係数/t值	0.0063	2.5196	0	-
a ₃ 係数/t值	0.0770	1.0595	-0.0277	-0.6673
a₄係数/t值	-0.0048	-0.8563	0.0032	1.0459
a₅係数/t值	-0.1624	-0.8761	-0.0605	-1.7621

回帰式: $HAZ = a_1 + a_2P + a_3d + a_4f + a_5s$

P:出力 [W] d:Duty比 [%] f:周波数 [Hz]

s:照射時間 [sec]

トレパニング加工の結果として、代表的パターンは 図12に示す4つで、最も良いのは、@の熱影響が少な く穴が開くもの、反対に最も悪いのは、@の熱影響が大 きいが穴が開かないものとなる。図12から分かること は、Dは、照射時間が最も短いが、熱影響は大きい。@と©の違いは、周波数のみ@の方が小さく、(3)式と(4) 式から L_{on} と t_{on} が@>©の関係にあり、@は丁度切断で きるエネルギーであったことを意味する。さらに@は、 ©より周波数が大きく、 L_{off} と t_{off} が©> ① の関係となり、停止時間が短く、連続照射に近い状況で熱影響が積算されたため、HAZが大きくなったと考えられる。

	結果画像	レーザ条件
⑧良好		出力 1004W 回転数 800rpm Duty 2.3% 周波数 500Hz 照射時間 50sec 回転直径 15mm 板厚 1.0mm マトリックスTPU HAZ 0.3999mm
⑥熱影響大		出力 1004W 回転数 800rpm Duty 18.4% 周波数 104Hz 照射時間 6sec 回転直径 15mm 板厚 1.0mm マトリックスTPU HAZ 1.1850mm
②空かない		出力 1004W 回転数 800rpm Duty 2.3% 周波数 1300Hz 照射時間 50sec 回転直径 15mm 板厚 1.0mm マトリックスTPU HAZ 0.1753mm
③空かない&熱影響大		出力 1004W 回転数 800rpm Duty 2.3% 周波数 5000Hz 照射時間 50sec 回転直径 15mm 板厚 1.0mm マトリックスTPU HAZ 0.9875mm

図12 トレパニング加工パターン

4. まとめ

CFRP のレーザによる切断加工は可能であるが、熱影 響層を全く無くすことはできないため、それを出来るだ け小さくし、且つ加工時間を短くする手法の実現が期待 されており、本研究で以下の基礎的知見を得た。

まず切断においては、焦点位置に合わせることが重要 である。そして CW モードより PW モードの方が熱影 響を小さくできる。しかし加工時間は長くなる。

トレパニング加工では、回転ヘッド機構を設けること で PW モードでも高速に複数パスが可能で優位である。

また、レーザ照射時、ワークの下にエラストマーシー トを敷くとヒートシンク効果により吸熱される。短時間 の照射であれば有効であるが、長時間照射を続けると逆 にエラストマー自体が高温になりワークに対しても影響 する。

また、トレパニング加工におけるレーザ条件とHAZ の影響について、実験結果を回帰分析したが、決定係数 は低く回帰式の精度はそれ程高いとは言えない。またF 検定及びt検定からも有意性を示す結果は得られていな い。この点はさらに検討を進めなければならない。今後 は、PWモードを中心に、レーザ出力、Duty比、周波 数、照射時間の各条件がHAZにどう影響するかについ て、補足実験を繰り返し、検証する予定である。

【参考文献】

1) 小河ら,岐阜県工業技術研究所研究報告 No.2, Vol.1, 2014