並列リンク型力覚ディスプレイの研究

久富 茂樹 光井 輝彰 飯田 佳弘

山田 宏尚** 武藤 高義**

Development of a Parallel Link Type Force Display

Shigeki Kudomi^{*}, Teruaki Mitsui^{*}, Yoshihiro Iida^{*}, Hironao Yamada^{**} and Takayoshi Muto^{**}

あらまし バーチャルリアリティや遠隔作業システムなど様々な分野において,操作者に作業反力(力覚)を 提示することが重要となってきている.本研究では,大パワー,高剛性といった特徴を有する油圧アクチュエー タを用いて,操作者に力覚の提示を可能とする力覚ディスプレイを開発する.本装置は力覚提示デバイスである と同時に操作者からの操作・指令装置としても機能しなければならないが,通常,油圧システムでは操作者から の力によって油圧ピストンを駆動させることは困難である.本研究ではこの問題に対し,力覚センサで検出した 操作者の力信号をもとにピストンを駆動させる方法を提案し,操作・指令装置として用いることを可能にした. さらに本方式を,1自由度力覚ディスプレイ及び6自由度(並列リンク型)力覚ディスプレイに適用し,その力 覚提示機能を実験により確認した.

キーワード 油圧システム,力覚,パラレルリンク,バックドライバビリティ,バイラテラル制御

1. まえがき

バーチャルリアリティ(VR)空間において仮想物体 を操作するとき,または作業者の微妙な力感覚を必要と する遠隔作業等においては,作業状態の視覚的な提示だ けでなく,作業反力(力覚)を提示することが要求され る.この課題の解決に向けて,作業者に力覚を提示する ための種々のデバイスが,力覚ディスプレイとして開発 されている[1].しかしながら,これまでに開発された力 覚ディスプレイでは,提示できる力が不十分,または構 造が複雑であるなどの問題点が存在する.

図1に,力覚ディスプレイに基づく遠隔作業の一応用 例を示す.図では,マスタマニピュレータとスレーブマ ニピュレータの両者が,並列(パラレル)型の6軸アク チュエータ(シリンダ)から成っており,スレーブマニ ピュレータのエンドエフェクタには作業用の工具が取 り付けられている.マスタマニピュレータは(操作者か らの)操作・指示装置であると同時に,(操作者へ)ス レーブマニピュレータの作業反力をフィードバックす る力覚ディスプレイとしても機能する.本研究では,図

*メカトロ応用部

Department of Mechanical and Systems Engineering, Gifu University 示のような研磨作業を始め,研削,塗装,彫刻など,比 較的高速・大パワー・高剛性を要する作業を考察の対象 とする.このようなシステムでは,大パワー,高剛性,

操作システム

Fig.1 Master-slave system for remote control

Mechatronics Division

^{**}岐阜大学工学部機械システム工学科

図 2 カセンサに基づくシリンダ駆動 Fig.2 Hydraulic servo system (Driving method by manual force)

高応答性といった特徴を有する油圧式のアクチュエー タが望ましいことから,以下では,アクチュエータ部の パラレルリンク機構を油圧シリンダによって構成した マスタスレーブシステムを想定する.これにより比較的 簡単な構造で,しかも提示できる力が大きく,応答性に 優れた遠隔作業システムが実現できる.

ところで,油圧サーボ系を力覚ディスプレイとして用 いる場合,制御弁の特性やピストンの摩擦等に起因して, バックドライバビリティ(操作者からの力によって油圧 ピストンを駆動し得るか否か)の問題が生じる.すなわ ち,通常の油圧サーボ系の場合,それを構成する一要素 (例えば制御弁)に操作者が手で触れ,その力によって シリンダを駆動することは困難である.この問題の克服 なくしては,図1のような力覚ディスプレイは実現し得 ない.それを可能とする一手法として本報では,力セン サによって検出された操作者の力信号に基づくピストン の駆動法を提案する.さらに,本提案の方法を,油圧式 の1自由度力覚ディスプレイ及び6自由度(並列リンク 型)力覚ディスプレイに適用し,その力覚提示機能につ いて実験的に検討する.

2. カセンサに基づくシリンダの駆動法

本研究では,油圧サーボ系におけるバックドライバビ リティの問題を解決するために,図2に示すようなシス テムの駆動法を提案する.本システムは,通常の油圧サ ーボ系(正重合を有するサーボ弁とシリンダ)を基本構 成としつつ,ピストンの先端部には板ばねを介して力セ ンサ(歪みゲージ)が設置されている.このセンサを入 力部として用いれば,操作者の手による次のようなシリ ンダの駆動法が実現される.

操作者による系への力入力は,図示の板ばね(以下, 操作板と呼ぶ)に手で触れることによって与えるものと する.まず,操作板に取り付けられた歪みゲージによっ て操作者の力が検出される.次に,この信号によりサー ボ弁を駆動させれば,操作者からの力の方向へピストン を動かすことができる.この方法によれば,操作者のわ

force-display

ずかな力によってピストンを操作できることから,油圧 サーボ系におけるバックドライバビリティの問題を解決 し得る.以下に,本提案の方法を油圧式の力覚ディスプ レイに適用した場合について検討する.

3. 1自由度力覚ディスプレイ

まず1自由度力覚ディスプレイを対象として,その力 覚提示機能について実験的に検討する.実験のシステム 構成を図3に示す.本実験における操作対象として,中 立位置から10[mm]だけピストンを押し込んだ位置に仮 想的なばねを設定した.操作者への力覚提示は次のよう に行う.操作者の力F_{op}によってピストンが動き,ピスト ン変位が10[mm]になったところで仮想のばねと接触す る.このときピストン変位 yと仮想ばねのばね定数kに よって決まる反力F_eが生じる.このF_eがF_{op}に追従する ように制御すれば,操作者に仮想ばねからの反力を提示 することができる.コントローラの制御則は PID とし, サンプリング時間は 1[ms],供給圧力 3.5[MPa]で実験を行 った.

実験結果を図4に示す.まず図4(a)は,仮想ばねのば ね定数を k=4[kN/m]に設定したときの結果である.操作 者が力を加えても,ピストンは仮想ばねに接触した 10[mm]の位置からさらに押し込まれることはなく,硬い ばねに接触したように感じることができた.次に図4(b) は,k=0.4[kN/m]に設定したときの結果であり,このとき ピストン変位は,仮想ばねに接触した位置から加えた力 に応じてさらに大きく変位しており,操作者には柔らか いばねに接触したように感じることができた.これらの 結果から,本システムが1自由度力覚ディスプレイとし て機能することを確認できた.

4.1自由度力覚ディスプレイを用いた マスタスレーブシステム

図1のような遠隔作業を行うためには,力覚ディスプ レイをマスタ,作業用マニピュレータをスレーブとする マスタスレーブシステムを構成し,それらをバイラテラ ル制御する必要がある.本節では,実際のばねを操作対 象として,マスタスレーブシステムによるばねへの接触 実験により本システムの力覚提示機能について検討する.

4.1 システム構成

図5に実験システムの構成図を示す.マスタ側で操作 者の力 *F_{op}*が力センサによって検出され,この信号によってピストンが駆動される.また,スレープ側にも板ば ねを介して力センサがピストン先端部に取り付けられて いる.マスタとスレープのピストン変位信号(*X_m*, *X_s*),

Fig.5 Diagram of experimental apparatus

(c) Force reflecting servo type

(d) Parallel control method

(e) Improved parallel control method

図6 バイラテラル制御法

Fig.6 Bilateral control methods applied for hydraulic force-display カセンサ信号 ($F_{op}=F_m$, F_s) はPC に取り込まれ, バイラ テラル制御則により計算された駆動信号がマスタ, スレ ーブにそれぞれ出力される.マスタ及びスレープの各コ ントローラは比例制御とし,サンプリング時間は 1[ms] で行った.また,作業対象として,硬さの異なる2種類 のばね(ばね定数 k=0.4,1 [kN/m])を用意し,ばねへの 接触感を操作者に伝えることにした.なお,油圧サーボ 系の構成要素(サーボ弁,シリンダ,管路等)はマスタ とスレープで異種のものを使用したことから,おのずと その動特性も異なっている.

4.2 バイラテラル制御の検討

システムの制御はバイラテラル制御を用いて行うが, 従来からよく知られているバイラテラル制御のシステム 構成法として,対称型,力逆送型,力帰還型,並列型が ある[3].図6に,これら4種の基本型(図6(a)~(d))に 加えて,本報で新たに提案する制御法(図6(e))の各プ ロック図を示す.

図6(a)の対称型はマスタとスレーブの位置誤差を測 定してこれを修正する方向へ駆動力を与えるものである. 油圧式力覚ディスプレイをマスタとして用いる場合,通 常の対称型の構成に加えて,マスタを駆動するための操 作者の力信号要素 *F_{op}*をマスタに付加する必要がある. この方法はスレーブの力情報を用いないため,スレーブ 変位に影響を及ぼす程度に作業反力が生じないと力覚を マスタに伝えることができない.つまり,スレーブの油 圧の力に比べて作業反力が小さい場合,操作者に対して ほとんど力覚を提示することができない.したがって, 本報で対象とするような微妙な力感覚作業システムには 適していない.

図6(b)の力逆送型は,スレーブを通常の位置サーボ系 で構成し,スレーブで検出した反力をマスタに伝達する ものである.この方法を油圧式力覚ディスプレイに適用 した場合,対称型のときと同様に操作者の力信号 F_{ep}を マスタに入力する必要がある.しかしながら,この F_{ep} はマスタに加えられる力 F_mにほかならず,マスタとスレ ーブの力信号の符号を考慮すれば,マスタに力のサーボ 系を構成した力帰還型(図6(c))に等価となる(力帰還 型の実験的な検討については後述する).

マスタとスレーブを並列的に構成する図6(d)の並列 型は,直列的な構成の力帰還型に比べ安定性が向上する といわれている.しかしながら,位置フィードバックで はなく,速度フィードバックを行っているため,マスタ とスレーブの動特性が異なる場合,マスタとスレーブの 位置追従性は補償され難い.また,この位置誤差が累積 すると,操作性に支障をきたすことが予想される.そこ で,この欠点を補う手法として,図6(e)の構成法(以下, 改良並列型という)を提案する.この方法は,並列型を 基本としながらも,マスタとスレーブの位置偏差をスレ ーブにのみフィードバックしている.位置サーボ系をス レープ側において構成することの効果として,マスタの 位置にスレーブが良好に追従するものと期待される.

以上の考察に基づき,本研究では,力帰還型(図6(c)) と改良並列型(図6(e))の2種類のバイラテラル制御法 を対象として,ばね(負荷)への接触作業に対する力覚 ディスプレイの力覚提示機能について比較実験を行った. 4.3 実験結果

バイラテラル制御則として力帰還型,提案する改良並 列型を用いたときの実験結果をそれぞれ図7,図8に示 す.いずれも図中(a)は柔らかいばね(k=0.4 [kN/m]),図 中(b)は硬いばね(k=1 [kN/m])の場合を示している.

まず力帰還型では,柔らかいばねの場合,スレーブが ばねへ接触すると同時にその力が検出され,マスタに加 えた力に等しくなるように制御されている.また,マス タとスレーブの両ピストン変位波形もほぼ良好に一致し ている.操作者には力覚ディスプレイ(マスタ装置部) を介して柔らかいばねに接触したことを感じることがで きた.しかしながら,硬いばねへの接触時には力,ピス トン変位ともに激しく振動し,安定に制御することがで きなかった.

提案する改良並列型では,柔らかいばねの場合,力帰 還型とほぼ同様な結果が得られ,操作者へ柔らかいばね 感覚の提示ができた.マスタとスレーブの動特性が異な るにもかかわらず,マスタとスレーブの両ピストン変位 波形もほぼ良好に一致している.また,力帰還型の場合 にシステムが不安定となった硬いばねへの接触作業も, 改良並列型では安定な制御が実現された.図8(a)に比べ 図8(b)では,より大きな力を加えているにもかかわらず ピストン変位は小さくなっており,操作者に対して硬い ばねへの接触感を提示することができた.以上の検討結 果に基づき,提案した改良並列型バイラテラル制御法の 有効性ならびに本システムの力覚提示機能が確認された.

5. 並列リンク型力覚ディスプレイ

ベースとエンドエフェクタの間に6本の油圧シリンダ を配置した並列リンク型(Stewart型)の力覚ディスプレ イを試作した.図9にシステム構成を示す.本装置は, 力覚ディスプレイ本体 , パーソナルコンピュータ(PC), A/D および D/A 変換器,アンプユニット,バルブユニッ ト(比例電磁弁),ポンプユニットから構成されている. 各シリンダのピストンロッドとエンドエフェクタ側のボ ールジョイントとの間には力覚センサ(歪みゲージ式) が取り付けられており , グリップから与えられた操作者 の力はこの力覚センサによって検知される.この信号 F は A/D 変換器を介して PC に入力され制御弁への制御入 力信号が演算される.演算された信号は D/A 変換器を介 して電圧信号 u としてアンプに与えられる.アンプはこ の電圧信号を電流信号 i に変換して比例電磁弁を駆動す る.これに伴い,油圧源から圧油がシリンダに流入しピ ストンが移動する.また, ピストンの移動量 X はポテン

図 7 力帰還型の実験結果

Fig.7 Experimental results of force reflecting servo type

図 8 改良並列型の実験結果

Fig.8 Experimental results of improved parallel control method

ショメータによって検出され,アンプを介して電圧信号 に変換された後, A/D 変換器を介して PC に入力される. 6本の油圧シリンダをそれぞれこの方法により駆動させ ることで6自由度の入力デバイスとして用いることが可 能となる.表1に本力覚ディスプレイの揺動範囲(機械 的最大値)を示す.

ruoterr hitotion runge	
Roll	±14 (deg)
Pitch	-13 ~ 14 (deg)
Yaw	± 35 (deg)
Surge	-44.0 ~ 35.5 (mm)
Sway	± 36.0 (mm)
Heave	-23.5 ~ 22.5 (mm)

Table 1 Motion range

本力覚ディスプレイの力覚提示機能を確認するために, 図 10 で示すように仮想ばねを6本のシリンダにそれぞ れ設定した.仮想ばねによる力覚提示の方法は先に述べ た1自由度力覚ディスプレイの場合と同様に行った.た だし, 各シリンダの最大ストロークは 40mm であり, そ の中間位置を原点と定め、伸び方向を負、縮み方向を正 とした .仮想ばねは各ピストン変位の原点位置に設定し, ピストン変位が原点位置からさらに縮む方向に変位する と, 仮想ばねのばね定数 k と変位量 y によって決まる 反力 F_e が計算される.この F_e が操作者からの力 F_{op} に追 従するように制御することで操作者への力覚提示を実現 する.コントローラの制御則は PD 制御とし, サンプリ ング時間は 1[ms],供給圧力 2.0[MPa]で実験を行った.

図 11 に実験結果を示す.図 11(a)は仮想ばねのばね定 数を k=0.5[kN/m]に設定した場合,図 11(b)は k=5[kN/m] に設定した場合の結果をそれぞれ示す.図には1本のシ リンダの結果のみを代表して示した.この実験では,6 本のシリンダがすべて最伸(y=-20[mm])である状態か

Fig.9 Parallel link type hydraulic force-display

図10 仮想ばねを用いた力覚提示

Fig.10 Schematic diagram of force feedback from a virtual spring

Fig.11 Experimental results of parallel link type force-display

ら,操作者はグリップを握り垂直下向きに力を加えた. この場合,6本のシリンダにはほぼ均等に力が加わるため,先に述べた駆動原理によって6本のシリンダはほぼ 同じ速度で押し込まれ,操作者はエンドエフェクタを垂 直下向きに動かすことができる.ピストンが原点位置に なったところで仮想ばねに接触し,仮想ばねのばね定数 kによって求まる反力 F_eが操作力 F_{op}に追従するように 制御することで操作者にばねの硬さを提示することがで きた.図 11(a)では仮想ばねに接触した後もピストンが大 きく変位しているのに対し,図 11(b)では接触位置からほ とんど変位することなく,仮想ばねが大きな抵抗となっ ていることがわかる.しかしながら,図 11(b)において F_e の波形がやや振動的になっていることからもわかるよう に,硬い物体を提示する場合,システムが不安定化する 傾向となる.したがって,より安定化するための制御手 法の検討が今後の課題である.また,力センサはシリン ダの軸方向に加わる力のみが検出されるため,操作者が 操作した場合,ロール,ピッチの動きは容易であるが, その他の動きを行う場合は抵抗が大きくなる(より大き な力が必要)といった問題点がある.今後は,力のセン シングの方法も含めて,どの動きもスムーズに行えるよ うに補償していく必要がある.

6. まとめ

本研究では,力センサの信号を用いてピストン駆動す ることによる油圧式力覚ディスプレイ(1自由度および 6自由度)を提案した.

1 自由度力覚ディスプレイでは仮想ばねおよび実際 のばねへの接触作業により,力覚提示機能を実験的に検 討した.その結果,操作者に対してばねの硬さの違いを 提示することができ,本力覚ディスプレイの力覚提示機 能を確認することができた.また,本システムに適した 新しいバイラテラル制御法を提案し,システムの安定性 と位置追従性の両立を図ることができた.

また,6本の油圧シリンダを並列に配置した並列リン ク型力覚ディスプレイを試作し,力センサ信号を用いて 各シリンダを駆動することにより6自由度の入力デバイ スとして用いることが可能となった.仮想ばねを用いた 実験により,本力覚ディスプレイの力覚提示機能を確認 した.

謝辞 本研究を遂行するにあたり,機械設備購入のた め補助金を頂いた日本自転車振興会に深く感謝の意を表 します.

文 献

- Burdea, "Force and Touch Feedback for Virtual Reality", Wiley-Interscience, 1996
- [2] 久冨茂樹,丹羽義典,山田宏尚,武藤高義,"パラレ ルリンク型力覚ディスプレイの開発(油圧または空気 圧サーボ系による力覚ディスプレイの基礎的検討),平成
 11 年春期フルイドパワーシステム講演会論文集, pp.37-39,1999
- [3] 日本ロボット学会編,"ロボット工学ハンドブック", コロナ社,1990
- [4] 久冨茂樹,山田宏尚,武藤高義,光井輝彰,飯田佳 弘,"パラレルリンク型力覚ディスプレイの開発(油 圧式1軸力覚ディスプレイの力フィードバックに関する検 討)",第17回流体計測第14回流体制御合同シンポジ ウム講演論文集,pp.17-20,1999